Search results for: prediction of iron ore reduction.
2181 Examining Effects of Electronic Market Functions on Decrease in Product Unit Cost and Response Time to Customer
Authors: Maziyar Nouraee
Abstract:
Electronic markets in recent decades contribute remarkably in business transactions. Many organizations consider traditional ways of trade non-economical and therefore they do trade only through electronic markets. There are different categorizations of electronic markets functions. In one classification, functions of electronic markets are categorized into classes as information, transactions, and value added. In the present paper, effects of the three classes on the two major elements of the supply chain management are measured. The two elements are decrease in the product unit cost and reduction in response time to the customer. The results of the current research show that among nine minor elements related to the three classes of electronic markets functions, six factors and three factors influence on reduction of the product unit cost and reduction of response time to the customer, respectively.
Keywords: Electronic Commerce, Electronic Market, B2B Trade, Supply Chain Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20092180 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes
Authors: S. Niksarlioglu, F. Kulahci
Abstract:
Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.
Keywords: Earthquake, Modeling, Prediction, Radon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30122179 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7342178 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences
Authors: Mai S. Mabrouk, Nahed H. Solouma, Abou-Bakr M. Youssef, Yasser M. Kadah
Abstract:
Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.
Keywords: Gene prediction, nonlinear dynamics, correlation dimension, Lyapunov exponent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18252177 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.
Keywords: Time series modelling, ARIMA model, River runoff, Karkheh River, CLS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7992176 A Parallel Architecture for the Real Time Correction of Stereoscopic Images
Authors: Zohir Irki, Michel Devy
Abstract:
In this paper, we will present an architecture for the implementation of a real time stereoscopic images correction's approach. This architecture is parallel and makes use of several memory blocs in which are memorized pre calculated data relating to the cameras used for the acquisition of images. The use of reduced images proves to be essential in the proposed approach; the suggested architecture must so be able to carry out the real time reduction of original images.Keywords: Image reduction, Real-time correction, Parallel architecture, Parallel treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11072175 Reliability Analysis of Underground Pipelines Using Subset Simulation
Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li
Abstract:
An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.
Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35562174 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method
Authors: Karuna Tuchinda, Sasithon Bland
Abstract:
This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.
Keywords: Physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31532173 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element
Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting processKeywords: Back-propagation artificial neural network(BPANN), prediction, upsetting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15522172 A Quantitative Analysis of GSM Air Interface Based on Radiating Columns and Prediction Model
Authors: K. M. Doraiswamy, Lakshminarayana Merugu, B. C. Jinaga
Abstract:
This paper explains the cause of nonlinearity in floor attenuation hither to left unexplained. The performance degradation occurring in air interface for GSM signals is quantitatively analysed using the concept of Radiating Columns of buildings. The signal levels were measured using Wireless Network Optimising Drive Test Tool (E6474A of Agilent Technologies). The measurements were taken in reflected signal environment under usual fading conditions on actual GSM signals radiated from base stations. A mathematical model is derived from the measurements to predict the GSM signal levels in different floors. It was applied on three buildings and found that the predicted signal levels deviated from the measured levels with in +/- 2 dB for all floors. It is more accurate than the prediction models based on Floor Attenuation Factor. It can be used for planning proper indoor coverage in multi storey buildings.Keywords: GSM air interface, nonlinear attenuation, multistory building, radiating columns, ground conduction and floor attenuation factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15722171 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.
Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19372170 Operation Strategies of Residential Micro Combined Heat and Power Technologies
Authors: Omar A Shaneb, Adell S. Amer
Abstract:
Reduction of CO2 emissions has become a priority for several countries due to increasing concerns about global warming and climate change, especially in the developed countries. Residential sector is considered one of the most important sectors for considerable reduction of CO2 emissions since it represents a significant amount of the total consumed energy in those countries. A significant CO2 reduction cannot be achieved unless some initiatives have been adopted in the policy of these countries. Introducing micro combined heat and power (!CHP) systems into residential energy systems is one of these initiatives, since such a technology offers several advantages. Moreover, !CHP technology has the opportunity to be operated not only by natural gas but it could also be operated by renewable fuels. However, this technology can be operated by different operation strategies. Each strategy has some advantages and disadvantages. This paper provides a review of different operation strategies of such a technology used for residential energy systems, especially for single dwellings. The review summarizes key points that outline the trend of previous research carried out in this field.
Keywords: Energy management, !CHP systems, residential energy systems, sustainable houses, operation strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23492169 Relative Mapping Errors of Linear Time Invariant Systems Caused By Particle Swarm Optimized Reduced Order Model
Authors: G. Parmar, S. Mukherjee, R. Prasad
Abstract:
The authors present an optimization algorithm for order reduction and its application for the determination of the relative mapping errors of linear time invariant dynamic systems by the simplified models. These relative mapping errors are expressed by means of the relative integral square error criterion, which are determined for both unit step and impulse inputs. The reduction algorithm is based on minimization of the integral square error by particle swarm optimization technique pertaining to a unit step input. The algorithm is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing methods.Keywords: Order reduction, Particle swarm optimization, Relative mapping error, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15742168 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks
Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei
Abstract:
An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25312167 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.
Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22172166 Modified PSO Based Optimal Control for Maximizing Benefits of Distributed Generation System
Authors: Priyanka Sen, Kaibalya Prasad Panda, Soumyakanta Samantaray, Sreyasee Rout, Bishnupriya Biswal
Abstract:
Deregulation in the power system industry and the invention of new technologies for producing electrical energy has led to innovations in power system planning. Distributed generation (DG) is one of the most attractive technologies that bring different kinds of advantages to a lot of entities, engaged in power systems. In this paper, a model for considering DGs in the power system planning problem is presented. Dynamic power system planning for reduction of maintenance and operational cost is presented in this paper. In addition to that, a modified particle swarm optimization (PSO) is used to find the optimal topology solution. Voltage Profile Improvement Index (VPII) and Line Loss Reduction Index (LLRI) are taken as benefit index of employing DG. The effectiveness of this method is demonstrated through examination of IEEE 30 bus test system.
Keywords: Distributed generation, line loss reduction index, particle swarm optimization, power system, voltage profile improvement index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9132165 Prediction of Load Capacity of Reinforced Concrete Corbels Strengthened with CFRP Sheets
Authors: Azad A. Mohammed, Gulan B. Hassan
Abstract:
Analytical procedure was carried out in this paper to calculate the ultimate load capacity of reinforced concrete corbels strengthened or repaired externally with CFRP sheets. Strut and tie method and shear friction method proposed earlier for analyzing reinforced concrete corbels were modified to incorporate the effect of external CFRP sheets bonded to the corbel. The points of weakness of any method that lead to an inaccuracy, especially when overestimating test results were checked and discussed. Comparison of prediction with the test data indicates that the ratio of test / calculated ultimate load is 0.82 and 1.17 using strut and tie method and shear friction method, respectively. If the limits of maximum shear stress is followed, the calculated ultimate load capacity using shear friction method was found to underestimates test data considerably.Keywords: Corbel, Strengthening, Strut and Tie Model, Shear Friction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27532164 Comparison between Associative Classification and Decision Tree for HCV Treatment Response Prediction
Authors: Enas M. F. El Houby, Marwa S. Hassan
Abstract:
Combined therapy using Interferon and Ribavirin is the standard treatment in patients with chronic hepatitis C. However, the number of responders to this treatment is low, whereas its cost and side effects are high. Therefore, there is a clear need to predict patient’s response to the treatment based on clinical information to protect the patients from the bad drawbacks, Intolerable side effects and waste of money. Different machine learning techniques have been developed to fulfill this purpose. From these techniques are Associative Classification (AC) and Decision Tree (DT). The aim of this research is to compare the performance of these two techniques in the prediction of virological response to the standard treatment of HCV from clinical information. 200 patients treated with Interferon and Ribavirin; were analyzed using AC and DT. 150 cases had been used to train the classifiers and 50 cases had been used to test the classifiers. The experiment results showed that the two techniques had given acceptable results however the best accuracy for the AC reached 92% whereas for DT reached 80%.
Keywords: Associative Classification, Data mining, Decision tree, HCV, interferon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18992163 Effect of Inlet Valve Variable Timing in the Spark Ignition Engine on Achieving Greener Transport
Authors: Osama H. Ghazal, Yousef S. Najjar, Kutaeba J. AL-Khishali
Abstract:
The current emission legislations and the large concern about the environment produced very numerous constraints on both governments and car manufacturers. Also the cost of energy increase means a reduction in fuel consumption must be met, without largely affecting the current engine production and performance. It is the intension to contribute towards the development and pursuing, among others on variable valve timing (VVT), for improving the engine performance. The investigation of the effect of (IVO) and (IVC) to optimize engine torque and volumetric efficiency for different engine speeds was considered. Power, BMEP and BSFC were calculated and presented to show the effect of varying inlet valve timing on them for all cases. A special program used to carry out the calculations. The analysis of the results shows that the reduction of 10% of (IVO) angle gave an improvement of around 1.3% in torque, BSFC, and volumetric efficiency, while a 10% decrease in (IVC) caused a 0.1% reduction in power, torque, and volumetric efficiency.
Keywords: Green transportation, inlet valve variable timing, performance, spark ignition engines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28622162 Tensile Behavior of Spheroidizing Heat Treated High Carbon Steel
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
Spheroidization heat treatment was conducted on the SK85 high carbon steel sheets with various initial microstructures obtained after cold rolling by various reduction ratios at a couple of annealing temperatures. On the high carbon steel sheet with fine pearlite microstructure, obtained by soaking at 800oC for 2hr in a box furnace and then annealing at 570oC for 5min in a salt bath furnace followed by water quenching, cold rolling was conducted by reduction ratios of 20, 30, and 40%. Heat treatment for spheroidization was carried out at 600 and 720oC for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times. Tensile tests were carried out at room temperature on the spheoidized high carbon steel.
Keywords: High carbon steel, SK85, pearlite, cementite, shperoidization, tensile behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41342161 Manifold Analysis by Topologically Constrained Isometric Embedding
Authors: Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
Abstract:
We present a new algorithm for nonlinear dimensionality reduction that consistently uses global information, and that enables understanding the intrinsic geometry of non-convex manifolds. Compared to methods that consider only local information, our method appears to be more robust to noise. Unlike most methods that incorporate global information, the proposed approach automatically handles non-convexity of the data manifold. We demonstrate the performance of our algorithm and compare it to state-of-the-art methods on synthetic as well as real data.
Keywords: Dimensionality reduction, manifold learning, multidimensional scaling, geodesic distance, boundary detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14552160 Numerical Analysis of Laminar to Turbulent Transition on the DU91-W2-250 Airfoil
Authors: M. Raciti Castelli, G. Grandi, E. Benini
Abstract:
This paper presents a study of laminar to turbulent transition on a profile specifically designed for wind turbine blades, the DU91-W2-250, which belongs to a class of wind turbine dedicated airfoils, developed by Delft University of Technology. A comparison between the experimental behavior of the airfoil studied at Delft wind tunnel and the numerical predictions of the commercial CFD solver ANSYS FLUENT® has been performed. The prediction capabilities of the Spalart-Allmaras turbulence model and of the γ-θ Transitional model have been tested. A sensitivity analysis of the numerical results to the spatial domain discretization has also been performed using four different computational grids, which have been created using the mesher GAMBIT®. The comparison between experimental measurements and CFD results have allowed to determine the importance of the numerical prediction of the laminar to turbulent transition, in order not to overestimate airfoil friction drag due to a fully turbulent-regime flow computation.
Keywords: CFD, wind turbine, DU91-W2-250, laminar to turbulent transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30702159 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction
Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat
Abstract:
Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.
Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6722158 An Efficient 3D Animation Data Reduction Using Frame Removal
Authors: Jinsuk Yang, Choongjae Joo, Kyoungsu Oh
Abstract:
Existing methods in which the animation data of all frames are stored and reproduced as with vertex animation cannot be used in mobile device environments because these methods use large amounts of the memory. So 3D animation data reduction methods aimed at solving this problem have been extensively studied thus far and we propose a new method as follows. First, we find and remove frames in which motion changes are small out of all animation frames and store only the animation data of remaining frames (involving large motion changes). When playing the animation, the removed frame areas are reconstructed using the interpolation of the remaining frames. Our key contribution is to calculate the accelerations of the joints of individual frames and the standard deviations of the accelerations using the information of joint locations in the relevant 3D model in order to find and delete frames in which motion changes are small. Our methods can reduce data sizes by approximately 50% or more while providing quality which is not much lower compared to original animations. Therefore, our method is expected to be usefully used in mobile device environments or other environments in which memory sizes are limited.
Keywords: Data Reduction, Interpolation, Vertex Animation, 3D Animation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16612157 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling
Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao
Abstract:
Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.Keywords: Neural Network, Fuzzy, River, Forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12892156 Peak-to-Average Power Ratio Reduction in OFDM Systems using Huffman Coding
Authors: Ashraf A. Eltholth, Adel R. Mikhail, A. Elshirbini, Moawad I. Moawad, A. I. Abdelfattah
Abstract:
In this paper we proposed the use of Huffman coding to reduce the PAR of an OFDM system as a distortionless scrambling technique, and we utilize the amount saved in the total bit rate by the Huffman coding to send the encoding table for accurate decoding at the receiver without reducing the effective throughput. We found that the use of Huffman coding reduces the PAR by about 6 dB. Also we have investigated the effect of PAR reduction due to Huffman coding through testing the spectral spreading and the inband distortion due to HPA with different IBO values. We found a complete match of our expectation from the proposed solution with the obtained simulation results.Keywords: HPA, Huffman coding, OFDM, PAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25972155 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique
Authors: V. Sandeep Kumar, S. Anuradha
Abstract:
The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.
Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28392154 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field
Authors: Nastaran Moosavi, Mohammad Mokhtari
Abstract:
Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.Keywords: Density, P-impedance, S-impedance, post-stack seismic inversion, pre-stack seismic inversion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22282153 A Predictive Rehabilitation Software for Cerebral Palsy Patients
Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux
Abstract:
Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.
Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20072152 Pressure Capacity Reduction of X52 Pipeline Steel Damaged by a Semi-Elliptical Pitting Corrosion
Authors: S. M. Kazerouni Sangi, Y. Gholipour
Abstract:
Steel made pipelines with different diameters are used for transmitting oil and gas which in many cases are buried in soil under the sea bed or immersed in sea water. External corrosion of pipes is an important form of deterioration due to the aggressive environment of sea water. Corrosion normally results in pits. Hence, using the finite element method, namely ABAQUS software, this paper estimates the amount of pressure capacity reduction of a pipecontaining a semi-elliptical pitting corrosion and the rate of corrosion during the pipeline life of 25 years.Keywords: Petroleum Transmission, Pipeline, PressureCapacity, Semi-Elliptical Pitting Corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537