Search results for: Virtual Training
907 Perception of Hygiene Knowledge among Staff Working in Top Five Famous Restaurants of Male’
Authors: Zulaikha Reesha Rashaad
Abstract:
One of the major factors which can contribute greatly to success of catering businesses is to employ food and beverage staff having sound hygiene knowledge. Individuals having sound knowledge of hygiene has a higher chance of following safe food practices in food production. One of the leading causes of food poisoning and food borne illnesses has been identified as lack of hygiene knowledge among food and beverage staff working in catering establishments and restaurants. This research aims to analyze the hygiene knowledge among food and beverage staff working in top five restaurants of Male’, in relation to their age, educational background, occupation and training. The research uses quantitative and descriptive methods in data collection and in data analysis. Data was obtained through random sampling technique with self-administered survey questionnaires which was completed by 60 respondents working in 5 different restaurants operating at top level in Male’. The respondents of the research were service staff and chefs working in these restaurants. The responses to the questionnaires have been analyzed by using SPSS. The results of the research indicated that age, education level, occupation and training correlated with hygiene knowledge perception scores.Keywords: Food and beverage staff, food poisoning, food production, hygiene knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091906 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: Artificial neural network, back-propagation, tide data, training algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712905 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing
Abstract:
The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838904 Social Media Research and Its Effect on Our Society
Authors: A. T. M Shahjahan, Kutub Uddin Chisty
Abstract:
Social media refers to the means of interactions among people in which they create share, exchange and comment contents among themselves in virtual communities and networks. Social media or "social networking" has almost become part of our daily lives and being tossed around over the past few years. It is like any other media such as newspaper, radio and television but it is far more than just about sharing information and ideas. Social networking tools like Twitter, Facebook, Flickr and Blogs have facilitated creation and exchange of ideas so quickly and widely than the conventional media. This paper shows the choices, communication, feeling comfort, time saving and effects of social media among the people.
Keywords: Media, Choice, Effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18369903 Simulation of Inverter Fed Induction Motor Drive with LabVIEW
Authors: R. Gunabalan, S. Immanuel Prabakaran, J. Reegan, S. Ganesh
Abstract:
This paper describes a software approach for modeling inverter fed induction motor drive using Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The reason behind the selection of LabVIEW software is because of its strong graphical interface, flexibility of its programming language combined with built-in tools designed specifically for test, measurement and control. LabVIEW is generally used in most of the applications for data acquisition, test and control. In this paper, inverter and induction motor are modeled using LabVIEW toolkits. Simulation results are presented and are validated.
Keywords: Induction motor, LabVIEW, State model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8576902 The Dilemma of Retention in the Context of Rapidly Growing Economies Based on the Effectiveness of HRM Policies: A Case Study of Qatar
Authors: A. Qayed Al-Emadi, C. Schwabenland, B. Czarnecka
Abstract:
In 2009, the new HRM policy was implemented in Qatar for public sector organisations. The purpose of this research is to examine how Qatar’s 2009 HRM policy was significant in influencing employee retention in public organisations. The conducted study utilised quantitative methodology to analyse the data on employees’ perceptions of such HRM practices as Performance Management, Rewards and Promotion, Training and Development associated with the HRM policy in public organisations in comparison to semi-private organisations. Employees of seven public and semi-private organisations filled in the questionnaire based on the 5-point Likert scale to present quantitative results. The data was analysed with the correlation and multiple regression statistical analyses. It was found that Performance Management had the relationship with Employee Retention, and Rewards and Promotion influenced Job Satisfaction in public organisations. Relationship between Job Satisfaction and Employee Retention was also observed. However, no significant differences were observed in the role of HRM practices in public and semi-private organisations.Keywords: Performance management, rewards, promotion, training and development, job satisfaction, employee retention, SHRM, configurationally perspective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709901 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning
Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov
Abstract:
The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.
Keywords: Computer-assisted instruction, Language learning, Natural language grammar models, HCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193900 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.
Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407899 Differential Analysis: Crew Resource Management and Profiles on the Balanced Inventory of Desirable Responding
Authors: Charalambos C. Cleanthous, Ryan Sain, Tabitha Black, Stephen Vera, Suzanne Milton
Abstract:
A concern when administering questionnaires is whether the participant is providing information that is accurate. The results may be invalid because the person is trying to present oneself in an unrealistic positive manner referred to as ‘faking good’, or in an unrealistic negative manner known as ‘faking bad’. The Balanced Inventory of Desirable Responding (BIDR) was used to assess commercial pilots’ responses on the two subscales of the BIDR: impression management (IM) and self-deceptive enhancement (SDE) that result in high or low scores. Thus, the BIDR produces four valid profiles: IM low and SDE low, IM high and SDE low, IM low and SDE high, and IM high and SDE high. The various profiles were used to compare the respondents’ answers to crew resource management (CRM) items developed from the USA Federal Aviation Administration’s (FAA) guidelines for CRM composition and training. Of particular interest were the results on the IM subscale. The comparisons between those scoring high (lying or faking) versus those low on the IM suggest that there were significant differences regarding their views of the various dimensions of CRM. One of the more disconcerting conclusions is that the high IM scores suggest that the pilots were trying to impress rather than honestly answer the questions regarding their CRM training and practice.
Keywords: USA commercial pilots, crew resource management, faking, social desirability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934898 Enhanced Data Access Control of Cooperative Environment used for DMU Based Design
Authors: Wei Lifan, Zhang Huaiyu, Yang Yunbin, Li Jia
Abstract:
Through the analysis of the process digital design based on digital mockup, the fact indicates that a distributed cooperative supporting environment is the foundation conditions to adopt design approach based on DMU. Data access authorization is concerned firstly because the value and sensitivity of the data for the enterprise. The access control for administrators is often rather weak other than business user. So authors established an enhanced system to avoid the administrators accessing the engineering data by potential approach and without authorization. Thus the data security is improved.Keywords: access control, DMU, PLM, virtual prototype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463897 Virtual Speaking Head for Hearing Impaired Students
Authors: Eva Pajorová, Ladislav Hluchý
Abstract:
Developed tool is one of system tools for easier access to various scientific areas and real time interactive learning between lecturer and for hearing impaired students. There is no demand for the lecturer to know Sign Language (SL). Instead, the new software tools will perform the translation of the regular speech into SL, after which it will be transferred to the student. On the other side, the questions of the student (in SL) will be translated and transferred to the lecturer in text or speech. One of those tools is presented tool. It-s too for developing the correct Speech Visemes as a root of total communication method for hearing impared students.Keywords: Impared people, sing language, communication methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844896 Motion Protection System Design for a Parallel Motion Platform
Authors: Dongsu Wu, Hongbin Gu
Abstract:
A motion protection system is designed for a parallel motion platform with subsided cabin. Due to its complex structure, parallel mechanism is easy to encounter interference problems including link length limits, joints limits and self-collision. Thus a virtual spring algorithm in operational space is developed for the motion protection system to avoid potential damages caused by interference. Simulation results show that the proposed motion protection system can effectively eliminate interference problems and ensure safety of the whole motion platform.Keywords: Motion protection, motion platform, parallelmechanism, Stewart platform, collision avoidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571895 A Guide to the Implementation of Ambisonics Super Stereo
Authors: Alessio Mastrorillo, Giuseppe Silvi, Francesco Scagliola
Abstract:
This paper explores the decoding of Ambisonics material into 2-channel mixing formats, addressing challenges related to stereo speakers and headphones. We present the Universal HJ (UHJ) format as a solution, enabling the preservation of the entire horizontal plane and offering versatile spatial audio experiences. Our paper presents a UHJ format decoder, explaining its design, computational aspects, and empirical optimization. We discuss the advantages of UHJ decoding, potential applications, and its significance in music composition. Additionally, we highlight the integration of this decoder within the Envelop for Live (E4L) suite.
Keywords: Ambisonics, UHJ, quadrature filter, virtual reality, Gerzon, decoder, stereo, binaural, biquad.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198894 Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application
Authors: Asma Rabaoui, Zied Lachiri, Noureddine Ellouze
Abstract:
Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.Keywords: Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645893 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224892 Cognitive Virtual Exploration for Optimization Model Reduction
Authors: Livier Serna, Xavier Fischer, Fouad Bennis
Abstract:
In this paper, a decision aid method for preoptimization is presented. The method is called “negotiation", and it is based on the identification, formulation, modeling and use of indicators defined as “negotiation indicators". These negotiation indicators are used to explore the solution space by means of a classbased approach. The classes are subdomains for the negotiation indicators domain. They represent equivalent cognitive solutions in terms of the negotiation indictors being used. By this method, we reduced the size of the solution space and the criteria, thus aiding the optimization methods. We present an example to show the method.Keywords: Optimization Model Reduction, Pre-Optimization, Negotiation Process, Class-Making, Cognition Based VirtualExploration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426891 An Online Space for Practitioners in the Water, Sanitation and Hygiene Sector
Authors: Olivier Mills, Bernard McDonell, Laura A. S. MacDonald
Abstract:
The increasing availability and quality of internet access throughout the developing world provides an opportunity to utilize online spaces to disseminate water, sanitation and hygiene (WASH) knowledge to practitioners. Since 2001, CAWST has provided in-person education, training and consulting services to thousands of WASH practitioners all over the world, supporting them to start, troubleshoot, improve and expand their WASH projects. As CAWST continues to grow, the organization faces challenges in meeting demand from clients and in providing consistent, timely technical support. In 2012, CAWST began utilizing online spaces to expand its reach by developing a series of resources websites and webinars. CAWST has developed a WASH Education and Training resources website, a Biosand Filter (BSF) Knowledge Base, a Household Water Treatment and Safe Storage Knowledge Base, a mobile app for offline users, a live chat support tool, a WASH e-library, and a series of webinar-style online training sessions to complement its in-person capacity development services. In order to determine the preliminary outcomes of providing these online services, CAWST has monitored and analyzed registration to the online spaces, downloads of the educational materials, and webinar attendance; as well as conducted user surveys. The purpose of this analysis was to find out who was using the online spaces, where users came from, and how the resources were being used. CAWST’s WASH Resources website has served over 5,800 registered users from 3,000 organizations in 183 countries. Additionally, the BSF Knowledge Base has served over 1000 registered users from 68 countries, and over 540 people from 73 countries have attended CAWST’s online training sessions. This indicates that the online spaces are effectively reaching a large numbers of users, from a range of countries. A 2016 survey of the Biosand Filter Knowledge Base showed that approximately 61% of users are practitioners, and 39% are either researchers or students. Of the respondents, 46% reported using the BSF Knowledge Base to initiate a BSF project and 43% reported using the information to train BSF technicians. Finally, 61% indicated they would like even greater support from CAWST’s Technical Advisors going forward. The analysis has provided an encouraging indication that CAWST’s online spaces are contributing to its objective of engaging and supporting WASH practitioners to start, improve and expand their initiatives. CAWST has learned several lessons during the development of these online spaces, in particular related to the resources needed to create and maintain the spaces, and respond to the demand created. CAWST plans to continue expanding its online spaces, improving user experience of the sites, and involving new contributors and content types. Through the use of online spaces, CAWST has been able to increase its global reach and impact without significantly increasing its human resources by connecting WASH practitioners with the information they most need, in a practical and accessible manner. This paper presents on CAWST’s use of online spaces through the CAWST-developed platforms discussed above and the analysis of the use of these platforms.
Keywords: Education and training, knowledge sharing, online resources, water and sanitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683890 Towards Security in Virtualization of SDN
Authors: Wanqing You, Kai Qian, Xi He, Ying Qian
Abstract:
In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get furtherdiscussions among the security of SDN virtualization.
Keywords: FlowVisor, Network virtualization, Potential threats, Possible solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162889 Interdisciplinarity: A Pedagogical Practice in the Classrooms
Abstract:
The world is changing and, consequently, the young people need to acquire more sophisticated tools and skills to lead with the new societies’ challenges. In the curriculum of the Portuguese education system, in the profile of students leaving compulsory education, the critical thinking and creative thinking are pointed out as skills to be developed, as well as the capacity of interconnect different knowledge and applicate them in different contexts and learning areas. Unlike primary school teachers, teachers specialized in a specific area sometimes reveal more difficulties in developing interdisciplinary approaches in the classrooms and, despite the effort, the interdisciplinarity is not a common practice in schools. Statements like "Mathematics is everywhere" are unquestionable, however, some math teachers continue to develop an abstract teaching of mathematics devoid of any connection with reality. Good mathematical problems in real contexts are promising in the development of interdisciplinary pedagogical practices. However, these problems are often addressed by teachers in multidisciplinary rather than interdisciplinary contexts or are not addressed at all due several reasons, which range from insecurity in working on disciplinary domains with which they are not comfortable to a lack of pedagogical resources. In this study this issue is approached through a case study involving Mathematics teachers, which, in their professional development scope, attended a training aimed at stimulating interdisciplinary practices in real contexts, namely related to the COVID-19 pandemic.
Keywords: Interdisciplinarity, Mathematics, professional development, teacher training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155888 SolarSPELL Case Study: Pedagogical Quality Indicators to Evaluate Digital Library Resources
Authors: Lorena Alemán de la Garza, Marcela Georgina Gómez-Zermeño
Abstract:
This paper presents the SolarSPELL case study that aims to generate information on the use of indicators that help evaluate the pedagogical quality of a digital library resources. SolarSPELL is a solar-powered digital library with WiFi connectivity. It offers a variety of open educational resources selected for their potential for the digital transformation of educational practices and the achievement of the 2030 Agenda for Sustainable Development, adopted by all United Nations Member States. The case study employed a quantitative methodology and the research instrument was applied to 55 teachers, directors and librarians. The results indicate that it is possible to strengthen the pedagogical quality of open educational resources, through actions focused on improving temporal and technological parameters. They also reveal that users believe that SolarSPELL improves the teaching-learning processes and motivates the teacher to improve his or her development. This study provides valuable information on a tool that supports teaching-learning processes and facilitates connectivity with renewable energies that improves the teacher training in active methodologies for ecosystem learning.Keywords: Educational innovation, digital library, pedagogical quality, solar energy, teacher training, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943887 PEIBM- Perceiving Emotions using an Intelligent Behavioral Model
Authors: Maryam Humayun, Zafar I. Malik, Shaukat Ali
Abstract:
Computer animation is a widely adopted technique used to specify the movement of various objects on screen. The key issue of this technique is the specification of motion. Motion Control Methods are such methods which are used to specify the actions of objects. This paper discusses the various types of motion control methods with special focus on behavioral animation. A behavioral model is also proposed which takes into account the emotions and perceptions of an actor which in turn generate its behavior. This model makes use of an expert system to generate tasks for the actors which specify the actions to be performed in the virtual environment.
Keywords: Behavioral animation, emotion, expert system, perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394886 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, a coupled damage effect in the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade are developed. The use of the composite material for the rotor offers a good stability. Numerical calculations on the model developed prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed determining the vibratory responses due to various excitations.
Keywords: Rotor, composite, damage, finite element, numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250885 Indigenous Knowledge and Nature of Science Interface: Content Considerations for Science, Technology, Engineering, and Mathematics Education
Authors: Mpofu Vongai, Vhurumuku Elaosi
Abstract:
Many African countries, such as Zimbabwe and South Africa, have curricula reform agendas that include incorporation of Indigenous Knowledge and Nature of Science (NOS) into school Science, Technology, Engineering and Mathematics (STEM) education. It is argued that at high school level, STEM learning, which incorporates understandings of indigenization science and NOS, has the potential to provide a strong foundation for a culturally embedded scientific knowledge essential for their advancement in Science and Technology. Globally, investment in STEM education is recognized as essential for economic development. For this reason, developing countries such as Zimbabwe and South Africa have been investing into training specialized teachers in natural sciences and technology. However, in many cases this training has been detached from the cultural realities and contexts of indigenous learners. For this reason, the STEM curricula reform has provided implementation challenges to teachers. An issue of major concern is the teachers’ pedagogical content knowledge (PCK), which is essential for effective implementation of these STEM curricula. Well-developed Teacher PCK include an understanding of both the nature of indigenous knowledge (NOIK) and of NOS. This paper reports the results of a study that investigated the development of 3 South African and 3 Zimbabwean in-service teachers’ abilities to integrate NOS and NOIK as part of their PCK. A participatory action research design was utilized. The main focus was on capturing, determining and developing teachers STEM knowledge for integrating NOIK and NOS in science classrooms. Their use of indigenous games was used to determine how their subject knowledge for STEM and pedagogical abilities could be developed. Qualitative data were gathered through the use dialogues between the researchers and the in-service teachers, as well as interviewing the participating teachers. Analysis of the data provides a methodological window through which in-service teachers’ PCK can be STEMITIZED and their abilities to integrate NOS and NOIK developed. Implications are raised for developing teachers’ STEM education in universities and teacher training colleges.
Keywords: Indigenous knowledge, nature of science, pedagogical content knowledge, STEM education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261884 The Democratization of 3D Capturing: An Application Investigating Google Tango Potentials
Authors: Carlo Bianchini, Lorenzo Catena
Abstract:
The appearance of 3D scanners and then, more recently, of image-based systems that generate point clouds directly from common digital images have deeply affected the survey process in terms of both capturing and 2D/3D modelling. In this context, low cost and mobile systems are increasingly playing a key role and actually paving the way to the democratization of what in the past was the realm of few specialized technicians and expensive equipment. The application of Google Tango on the ancient church of Santa Maria delle Vigne in Pratica di Mare – Rome presented in this paper is one of these examples.
Keywords: Architectural survey, augmented/mixed/virtual reality, Google Tango project, image-based 3D capturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711883 Gas Detection via Machine Learning
Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso
Abstract:
We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539882 Exploring More Productive Ways of Working
Authors: Jenna Ruostela, Antti Lönnqvist
Abstract:
New ways of working- refers to non-traditional work practices, settings and locations with information and communication technologies (ICT) to supplement or replace traditional ways of working. It questions the contemporary work practices and settings still very much used in knowledge-intensive organizations today. In this study new ways of working is seen to consist of two elements: work environment (incl. physical, virtual and social) and work practices. This study aims to gather the scattered information together and deepen the understanding on new ways of working. Moreover, the objective is to provide some evidence of the unclear productivity impacts of new ways of working using case study approach.
Keywords: Knowledge work, new ways of working, productivity, work environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184881 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746880 Education and Assessment of Civil Employees in e-Government: The Case of a Moodle Based Platform
Authors: Stamatios A. Theocharis, George A. Tsihrintzis
Abstract:
One of the most important factors for the success of e-government is training and preparing the workforce of the public sector. As changes and innovation in the public sector progress at a very slow pace and more slowly than in the private sector, issues related to human resources require special care. This is because the workforce will eventually seize the opportunities of the technological solutions used in e-Government. Thus, the central administration should provide employees with continuous and focused training not only on new technologies but also on a wide range of subjects and also improve interdepartmental interaction.
To achieve all this, new methods and training tools need to be implemented in addition to assessment of the employees. In this spirit, we propose the development of an educational platform with user personalization features. We propose the development of this platform using Moodle as the basic tool. Incorporating a personalization mechanism is very important since different employees have different backgrounds, education levels, computer skills, or different capability to develop further. Key features of the proposed platform include, besides typical e-learning tools, communities organized in order to exchange experiences and knowledge, groups of users based on certain criteria, automatic evaluation of users and potential self-education and self-assessment. In its fully developed form, this platform can be part of a more comprehensive knowledge management system for the public sector.
Keywords: e-Government, civil employees education, education technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938879 An Android Geofencing App for Autonomous Remote Switch Control
Authors: Jamie Wong, Daisy Sang, Chang-Shyh Peng
Abstract:
Geofence is a virtual fence defined by a preset physical radius around a target location. Geofencing App provides location-based services which define the actionable operations upon the crossing of a geofence. Geofencing requires continual location tracking, which can consume noticeable amount of battery power. Additionally, location updates need to be frequent and accurate or order so that actions can be triggered within an expected time window after the mobile user navigate through the geofence. In this paper, we build an Android mobile geofencing Application to remotely and autonomously control a power switch.Keywords: Location based service, geofence, autonomous, remote switch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440878 Analyzing Artificial Emotion in Game Characters Using Soft Computing
Authors: Musbah M. Aqel, P. K. Mahanti, Soumya Banerjee
Abstract:
This paper describes a simulation model for analyzing artificial emotion injected to design the game characters. Most of the game storyboard is interactive in nature and the virtual characters of the game are equipped with an individual personality and dynamic emotion value which is similar to real life emotion and behavior. The uncertainty in real expression, mood and behavior is also exhibited in game paradigm and this is focused in the present paper through a fuzzy logic based agent and storyboard. Subsequently, a pheromone distribution or labeling is presented mimicking the behavior of social insects.
Keywords: Artificial Emotion, Fuzzy logic, Game character, Pheromone label
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312