

Abstract—In this paper, the potential security issues brought by

the virtualization of a Software Defined Networks (SDN) would be
analyzed. The virtualization of SDN is achieved by FlowVisor (FV).
With FV, a physical network is divided into multiple isolated logical
networks while the underlying resources are still shared by different
slices (isolated logical networks). However, along with the benefits
brought by network virtualization, it also presents some issues
regarding security. By examining security issues existing in an
OpenFlow network, which uses FlowVisor to slice it into multiple
virtual networks, we hope we can get some significant results and also
can get furtherdiscussions among the security of SDN virtualization.

Keywords—FlowVisor, Network virtualization, Potential threats,
Possible solutions.

I. INTRODUCTION

LOWVISORis a network slicer [1] that acts as a transparent
proxy between OpenFlow switches and controllers, which

enables multiple tenants to share physical infrastructure.
FlowVisor creates rich slices of network resources and delegate
control of each slice to a different controller. By applying
slicing policy on the entire network, it is useful to make
different controllers with different responsibility to manage a
big network. FlowVisor sits between controllers and switches,
forwarding messages to the right controllers and helping
control over slices according to slicing policies [2]. FlowVisor
is a transparent layer between controllers and switches. From
the controller’s point of view, a FlowVisor behaves like a
switch; and from the switch’s point of view, it is like a
controller. FlowVisor ensures that each controller touches only
the switches and resources assigned to it. By pointing out this,
those threats existing in ordinary SDN networks are still
considered as the security issues after virtualization.

The architecture of the SDN after applying FlowVisor is
shown as Fig.1. [1] FlowVisor sits between the OpenFlow
controllers and switches. It configures the entire network into
different slices according to the slice policy of different
controller. The resources that can be isolated in FlowVisor are
bandwidth, topology, traffic, switch CPU and forwarding table.
The aforementioned infrastructure and resources are sliced into
abstracted units by FlowVisor. FlowVisor operates as a
transparent proxy controller between the physical switches of
an OpenFlow network and other OpenFlow controllers and

Wanqing Youis with the Southern Polytechnic State University, Marietta,

GA 30060 USA (e-mail: wyou@ spsu.edu).
Kai Qian, Dr., is with Southern Polytechnic State University, Marietta, GA

30060 USA. He is now with the Department of Computer Science (e-mail:
kqian@spsu.edu).

Xi He is with the Computer ScienceDepartment,Georgia State University,
Atlanta, GA USA (e-mail: hexi111@spsu.edu).

Ying Qianis with the Computer Science Department, East China Normal
University, China (e-mail: yqian@cs.ecnu.edu).

enables multiple controllers to operate the same physical
infrastructure. The SDN network with FlowVisor consists of
the following four main components:1) Guest controller, 2)
Slice policy, 3) Control messages sent to switch, 4)
Asynchronous messages to controller. The slice policy
provides the method to isolate the network. With the
aforementioned features, the advantages of FlowVisor
summarized as [3]: Multi-tenancy; Better resource utilization;
Simplified management; Rapid/Isolated service development.
However, potential threats come along with those benefits
cannot be ignored.

Fig. 1 FlowVisor Architecture [1]

II. VULNERABILITY ANALYSIS

FlowVisor is a solution proposed to make the network
management more effective and efficient. Also the cross-slice
threat can be addressed by applying appropriate slicing policy.
However, if FlowVisor is made use of by attackers, it will lead
to disaster in the entire network.

Some of the potential threats are depicted in Fig. 2. In this
section, we will discuss the detail about the possible threats and
corresponding solutions.

A. Inference between Controller and Switch

FlowVisor provides various isolation mechanism to slice
physical network from different dimensions; however, it does
not implement action isolation, which is first analyzed in the
prototype FITS [4]. This means that what kinds of actions that
can be set on a flow entry are not well defined. Victor [4]
proposed three possible threats that are related with the header
fields’ modification.

Possible solutions are developing a priority mechanism to set
controllers with different access privileges; and a well-defined
slice policy is needed.

Towards Security in Virtualization of SDN
Wanqing You, Kai Qian, Xi He, Ying Qian

F

Controller1 Controller2

Flow Space
Resource
Allocation
Policy

FlowVisor

OpenFlow Switch

Controller 1
slice policy

Controller 2
slice policy

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:8, 2014

1479International Scholarly and Scientific Research & Innovation 8(8) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

8,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
93

41
.p

df

Fig.2 Threats Model

Fig. 3 Overlap of Flow Spaces

B. Denial of Service (DoS)

DoS is a prevalent network security issue, thus it is also a
potential threat even in SDN with the use of FlowVisor [5], [6].
By generating DoS in FlowVisor, attackers are able to destroy
the slicing policy performed in SDN network. The result may
lead to different slices intervened by each other.

The solutions for this issue are as following.Rate limitation
should be set both on controllers and switches; use FlowVisor
to create a virtual black hole, like Cisco’s interface null0, which
can be used to suck in all malicious traffic.

C. Network-Wide Invariants

A network should be secure to forwarding loops and black
holes in order to be steady. These were analyzed by Marco et al.
that there is a forwarding loop if a packet goes through any
given <switch-id, in_port> more than once. And a network is

free from black holes if no packets are dropped in the network
[7].

A prototype named VeriFlow was proposed by Ahmed et al.
to check network-wide invariants [8].

D. Interference between Flow Spaces

A Flow space is a set of policies that describe the flow entries
controlled by a particular controller. Since the flow tables of
switches are shared by different controllers, the isolation
mechanism may be violated if a Flow space belongs to
Controller 1 is intervened by others, such as the rules
maintained by Controller 1 can be modified by Controller2.
This threat will destroy the isolation mechanism of FlowVisor.
A scenario is shown as Fig.3.

III. INTERFERENCE TESTING

A. Attack Simulation

In this section, a flow space overlap in FlowVisor is tested.
As the Fig. 3 describes, two flow spaces added by administrator
may intersect with each other in the match fields, which is able
to make controller 1 intervenes the traffic of controller 2. In this
example, the match fields specified by flow space 1 include that
in flow space 2 (x=1, y=2 is a subset of x=1, y=2, z=3).

When a host intends to send a packet to another host, if there
is not a corresponding rule inside switch’s flow table to direct
this packet; then a Package_In event will be thrown from
switch to controller to request for the commands. When a
FlowVisor is included in the network, the request from switch
will reach at FlowVisor first, and FlowVisor forwards the
request to its controlling controller. After controller makes the
decision to deal with the request, a Packet_Out event will be
thrown to FlowVisor and then be forwarded to switch.

In the first case, a Package_In message with the header x=1,
y=2 comes. This message would be forwarded to controller 1
by FlowVisor to request how to deal with this packet and then a
new rule with match fields specify x=1, y=2, z=*, and actions is
inserted into switch flow table. The labels from 1 to 5 indicate
this procedure. When another Package_In message with the
header x=1, y=2, z=3 comes. When this message arrives at
switch 1, according to the previously installed rule, this packet
will take the actions specified by that rule. It means slice 1
controls the traffic of slice 2. This is one of the interference that
is possible to take place if flow space configuration is not
implemented appropriately.

B. Threats and Solutions

The cases discussed above illustrated part of the potential
vulnerability when FlowVisor is introduced into OpenFlow.
FlowVisor is implemented to achieve network virtualization in
SDN, so that production network and testing network work
perfectly without interference. However, FlowViosr itself
provides a tempting target for hackers, because FlowVisor acts
both as a controller and a slicer in SDN, if it is down, the whole
network is compromised. When referring to network security,
CIA, which stands for confidentiality, integrity and availability,
should be addressed. The prevention and detection of this kind
of issue is vital in order to achieve a secure SDN network.

5

Slicing policy
dpid1 priority=10 x=1,y=2 Slice:slice1=7
dpid1 priority=10 x=1,y=2,z=3
Slice:slice1=7

C1
(slice1)

C2
(slice2)

S1(dpid1)

FlowVisor

H1 H2 H3

1

 3

Flow entryactions
X=1,y=2,z=*H1->H2

4

FlowVisor

Controllers

OF Switches

2, 3

1

Slice 1

4

4

Slice 2

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:8, 2014

1480International Scholarly and Scientific Research & Innovation 8(8) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

8,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
93

41
.p

df

A possible strategy is to add an additional event handling
mechanism in FlowVisor. The main concept is that a
new_insert event will be thrown when adding a new flow
space.When receiving the event, the event handler will check if
there is overlap of flow spaces.

The possible strategies here to check the overlap of flow
spaces mentioned above is shown as Fig.4. It means every time
when a new flow space is added, the script below will be
triggered to go through the existing flow spaces list and each
flow space in the list will be compared with the new flow space.
If there is an overlap, it is the network administrator’s duty to
make a decision either rewriting the existing flow space or
giving up the new flow space.

Fig.4 Function for checking flow space overlapping

Fig. 5 Controller 1 interferences controller 2

C. Evaluation

In this section, theexperimentation we achieved in previous
section is shown. The diamond topology was implemented in
our testing, and it was sliced into an upper slice and a lower

slice with two of the switches shared in difference slices. After
the slicing policy was done by “fvctl” commands, we used
“pingall” command to test the reachability between all pairs of
hosts, which was shown in Fig. 5. After slicing, only hosts in
the same slice are reachable from one to another.

More flow spaces were added to make flow space
overlapping. In our case, the newly added flow spaces would be
the same as previously added flow spaces while also specifying
the communication protocols used when sending packets and
assigned to the other controller. The result was that the first
controller would take care of the requests that should have been
responded by the second controller, which was illustrated
below in Fig. 5.

IV. FUTURE WORK

We have simulated a port based slicing policy and a possible
strategy is proposed. In the future, we will make effort to
implement this solution and have the performance been tested.
Moreover, we will slice the network according to other slicing
policies and try to figure out potential threats existing in a SDN
network with FlowVisor, come up with solutions
corresponding.

In the future, we plan to implement a network slicing
experimentation by FlowVisor to validate the feasibility of
aforementioned threats as well as to explore more possible
vulnerabilities in OpenFlow with FlowVisor in depth.

V. CONCLUSION

In this paper, we focus on the security issues on SDN
virtualization. We have explored and analyzed potential attacks
possibilities and possible defense strategy.Our work was based
on a switch ports slicing. If ports belong to different slices and
the flow spaces configuration is not proper, it is very likely that
a cross-slices threat will take place. And we figured out an
event handling mechanism in FlowVisor to avoid flow spaces
overlapping. As mentioned in the last section, in the future, we
will dedicate to employing the strategy we proposed in
FlowVisor. Moreover, we will try to implement other slicing
policy based on VLAN ID and other slicing mechanism and try
to explore the potential vulnerability and try to make SND
network more secure

REFERENCES
[1] Rob Sherwood, Glen Gibb, Kok-kiongYap, Guido Appenzeller, Martin

Casado, Nick Mckeown, and Guru Parulkar. FlowVisor: A Network
Virtualization Layer.OpenFlow Switch, page 15, 2009

[2] Rowan Kloeti, OpenFlow: A Security Analysis, 2012
ftp://yosemite.ee.ethz.ch/pub/students/2012-HS/MA-2012-20_signed.pd
f

[3] incntre.iu.edu/sites/default/files/FlowVisor%20Intro.pptx, accessed 2014
[4] Victor T. Costa, Luıs Henrique M. K. Costa, Vulnerability Study of

FlowVisor-based Virtualized Network Environments
http://www.gta.ufrj.br/wnetvirt13/papers/ts5-02.pdf

[5] Romão, Daniel, et al. "Practical security analysis of OpenFlow
implementation." ,2013

[6] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable
software-defined networks,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking.
ACM,pp. 55–60, 2013

[7] Canini, Marco, et al. "A NICE way to test OpenFlow
applications." NSDI,04/2012

//function used to check if there is a flow //space
overlap
//Input: array of flow spaces
//Output: if there will be flow spaces //overlap,
give a prompt to administrator //asking for
decision: rewrite or quit.
functioncheckOverlap(Array<FlowSpace> flows,
FlowSpacenewFlow)
START:
foreach flow in flows:

if(newFlow∩ flow ≠Φ):

prompt: rewrite or quit
break;

end if
endforeach
END

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:8, 2014

1481International Scholarly and Scientific Research & Innovation 8(8) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

8,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
93

41
.p

df

[8] Khurshid, Ahmed, et al. "Veriflow: Verifying network-wide invariants in
real time." ACM SIGCOMM Computer Communication Review 42.4:
467-472, 2012

Wanqing You is a graduate student in the department of computer science &
software engineering at Southern Polytechnic State University. She got her
bachelor degree in software engineering at Xiamen University, China, 2013.
She has industrial experience in the related field and has published papers in her
research areas.

Dr. Kai Qian is a computer science professor in the department of computer
science & software engineering at Southern Polytechnic State University. He
got his Ph.D in computer science and engineering at University of
Nebraska-Lincoln, 1990. His research areas include computer network and
mobile security, big data analysis for security, machine learning, and pattern
recognition. He has published about 100 research papers in these areas in many
journals and conferences. He has received a number of research projects on the
cybersecurity from NSF these years.

Xi He is a CS research assistant and instructor at Georgia State University. He
is specialized in parallel and distributed computing, network architecture, and
grid computing. He has much year industrial experience as a software engineer
and has published papers in his research areas.

Dr. Ying Qian is an Associate Professor in the Department of Computer
Science and Technology, at East China Normal University, Shanghai, China.
She received her Master and Ph.D. degree in Department of Electrical &
Computer Engineering from Queen’s University, Kingston, Ontario, Canada.
Her research interests include Software Defined Network, high-performance
scientific computation, and parallel programming. Sh e has published about 20
research papers in these areas in many journals and conferences.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:8, 2014

1482International Scholarly and Scientific Research & Innovation 8(8) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

8,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
93

41
.p

df

