Search results for: Large Data
8427 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.
Keywords: Decentralized, optimal control, output, singular perturb.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15688426 Data Mining Using Learning Automata
Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri
Abstract:
In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19358425 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks
Authors: A. Krishna Veni, R.Geetha
Abstract:
Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.
Keywords: Aggregation, lifetime, network security, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12178424 Development of Greenhouse Analysis Tools for Home Agriculture Project
Authors: M. Amir Abas, M. Dahlui
Abstract:
This paper presents the development of analysis tools for Home Agriculture project. The tools are required for monitoring the condition of greenhouse which involves two components: measurement hardware and data analysis engine. Measurement hardware is functioned to measure environment parameters such as temperature, humidity, air quality, dust and etc while analysis tool is used to analyse and interpret the integrated data against the condition of weather, quality of health, irradiance, quality of soil and etc. The current development of the tools is completed for off-line data recorded technique. The data is saved in MMC and transferred via ZigBee to Environment Data Manager (EDM) for data analysis. EDM converts the raw data and plot three combination graphs. It has been applied in monitoring three months data measurement for irradiance, temperature and humidity of the greenhouse..Keywords: Monitoring, Environment, Greenhouse, Analysis tools
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20188423 An Approach for Transient Response Calculation of large Nonproportionally Damped Structures using Component Mode Synthesis
Authors: Alexander A. Muravyov
Abstract:
A minimal complexity version of component mode synthesis is presented that requires simplified computer programming, but still provides adequate accuracy for modeling lower eigenproperties of large structures and their transient responses. The novelty is that a structural separation into components is done along a plane/surface that exhibits rigid-like behavior, thus only normal modes of each component is sufficient to use, without computing any constraint, attachment, or residual-attachment modes. The approach requires only such input information as a few (lower) natural frequencies and corresponding undamped normal modes of each component. A novel technique is shown for formulation of equations of motion, where a double transformation to generalized coordinates is employed and formulation of nonproportional damping matrix in generalized coordinates is shown.Keywords: component mode synthesis, finite element models, transient response, nonproportional damping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18058422 Determining the Principles Affecting Perceptions of Strategic Quality Management Implementation: A Study of the Turkish Large Scale Firms
Authors: Gül Tekin Temur, Tolga Kaya, Serpil Öktem, Sıtkı Gözlü
Abstract:
The purpose of this study is to reveal the principles, which have the highest impact on determining the Strategic Quality Management (SQM) implementation perceptions of managers. In order to accomplish this goal, first of all, a factor analysis is conducted on the attitudes of managers at 80 large-scale firms in Turkey for SQM principles. Secondly, utilizing t tests and discriminant analysis, the most effective items are determined. The results show that “process improvement" and “assessment of competitiveness" are the management principles, which have the highest impact on determining the SQM implementation perceptions of Turkish managers.
Keywords: Assessment of Competitiveness, Process Improvement, Strategic Quality Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15298421 Extension of the Client-Centric Approach under Small Buffer Space
Authors: Hsiang-Fu Yu, Yu-Chan Hsu, Chun Fang, Hao-Yun Yang
Abstract:
Periodic broadcast is a cost-effective solution for large-scale distribution of popular videos because this approach guarantees constant worst service latency, regardless of the number of video requests. An essential periodic broadcast method is the client-centric approach (CCA), which allows clients to use smaller receiving bandwidth to download broadcast data. An enhanced version, namely CCA++, was proposed to yield a shorter waiting time. This work further improves CCA++ in reducing client buffer requirements. The new scheme decreases the buffer requirements by as much as 52% when compared to CCA++. This study also provides an analytical evaluation to demonstrate the performance advantage, as compared with particular schemes.
Keywords: Periodic broadcast, client-centric approach, buffer space, multimedia communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17748420 A Robust Data Hiding Technique based on LSB Matching
Authors: Emad T. Khalaf, Norrozila Sulaiman
Abstract:
Many researchers are working on information hiding techniques using different ideas and areas to hide their secrete data. This paper introduces a robust technique of hiding secret data in image based on LSB insertion and RSA encryption technique. The key of the proposed technique is to encrypt the secret data. Then the encrypted data will be converted into a bit stream and divided it into number of segments. However, the cover image will also be divided into the same number of segments. Each segment of data will be compared with each segment of image to find the best match segment, in order to create a new random sequence of segments to be inserted then in a cover image. Experimental results show that the proposed technique has a high security level and produced better stego-image quality.Keywords: steganography; LSB Matching; RSA Encryption; data segments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22208419 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: Behavior, big data, hierarchical Hidden Markov Model, intelligent object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7648418 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data
Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto
Abstract:
This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.
Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12358417 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.
Keywords: Genetic data, Pinzgau cattle, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23188416 A Comparative Study of Fine Grained Security Techniques Based on Data Accessibility and Inference
Authors: Azhar Rauf, Sareer Badshah, Shah Khusro
Abstract:
This paper analyzes different techniques of the fine grained security of relational databases for the two variables-data accessibility and inference. Data accessibility measures the amount of data available to the users after applying a security technique on a table. Inference is the proportion of information leakage after suppressing a cell containing secret data. A row containing a secret cell which is suppressed can become a security threat if an intruder generates useful information from the related visible information of the same row. This paper measures data accessibility and inference associated with row, cell, and column level security techniques. Cell level security offers greatest data accessibility as it suppresses secret data only. But on the other hand, there is a high probability of inference in cell level security. Row and column level security techniques have least data accessibility and inference. This paper introduces cell plus innocent security technique that utilizes the cell level security method but suppresses some innocent data to dodge an intruder that a suppressed cell may not necessarily contain secret data. Four variations of the technique namely cell plus innocent 1/4, cell plus innocent 2/4, cell plus innocent 3/4, and cell plus innocent 4/4 respectively have been introduced to suppress innocent data equal to 1/4, 2/4, 3/4, and 4/4 percent of the true secret data inside the database. Results show that the new technique offers better control over data accessibility and inference as compared to the state-of-theart security techniques. This paper further discusses the combination of techniques together to be used. The paper shows that cell plus innocent 1/4, 2/4, and 3/4 techniques can be used as a replacement for the cell level security.
Keywords: Fine Grained Security, Data Accessibility, Inference, Row, Cell, Column Level Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14718415 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi
Abstract:
Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.
Keywords: RFID, asset tracking system, MongoDB, NoSQL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16498414 Large-Eddy Simulation of Hypersonic Configuration Aerodynamics
Authors: Huang Shengqin, Xiao Hong
Abstract:
LES with mixed subgrid-scale model has been used to simulate aerodynamic performance of hypersonic configuration. The simulation was conducted to replicate conditions and geometry of a model which has been previously tested. LES Model has been successful in predict pressure coefficient with the max error 1.5% besides afterbody. But in the high Mach number condition, it is poor in predict ability and product 12.5% error. The calculation error are mainly conducted by the distribution swirling. The fact of poor ability in the high Mach number and afterbody region indicated that the mixed subgrid-scale model should be improved in large eddied especially in hypersonic separate region. In the condition of attach and sideslip flight, the calculation results have waves. LES are successful in the prediction the pressure wave in hypersonic flow.Keywords: Hypersonic, LES, mixed Subgrid-scale model, experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15728413 Assessment of Multiscale Information for Short Physiological Time Series
Authors: Young-Seok Choi
Abstract:
This paper presents a multiscale information measure of Electroencephalogram (EEG) for analysis with a short data length. A multiscale extension of permutation entropy (MPE) is capable of fully reflecting the dynamical characteristics of EEG across different temporal scales. However, MPE yields an imprecise estimation due to coarse-grained procedure at large scales. We present an improved MPE measure to estimate entropy more accurately with a short time series. By computing entropies of all coarse-grained time series and averaging those at each scale, it leads to the modified MPE (MMPE) which provides an enhanced accuracy as compared to MPE. Simulation and experimental studies confirmed that MMPE has proved its capability over MPE in terms of accuracy.Keywords: Multiscale entropy, permutation entropy, EEG, seizure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14788412 SLM Using Riemann Sequence Combined with DCT Transform for PAPR Reduction in OFDM Communication Systems
Authors: Pepin Magnangana Zoko Goyoro, Ibrahim James Moumouni, Sroy Abouty
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) is an efficient method of data transmission for high speed communication systems. However, the main drawback of OFDM systems is that, it suffers from the problem of high Peak-to-Average Power Ratio (PAPR) which causes inefficient use of the High Power Amplifier and could limit transmission efficiency. OFDM consist of large number of independent subcarriers, as a result of which the amplitude of such a signal can have high peak values. In this paper, we propose an effective reduction scheme that combines DCT and SLM techniques. The scheme is composed of the DCT followed by the SLM using the Riemann matrix to obtain phase sequences for the SLM technique. The simulation results show PAPR can be greatly reduced by applying the proposed scheme. In comparison with OFDM, while OFDM had high values of PAPR –about 10.4dB our proposed method achieved about 4.7dB reduction of the PAPR with low complexities computation. This approach also avoids randomness in phase sequence selection, which makes it simpler to decode at the receiver. As an added benefit, the matrices can be generated at the receiver end to obtain the data signal and hence it is not required to transmit side information (SI).Keywords: DCT transform, OFDM, PAPR, Riemann matrix, SLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26408411 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.
Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16018410 A World Map of Seabed Sediment Based on 50 Years of Knowledge
Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès
Abstract:
Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.
Keywords: Marine sedimentology, seabed map, sediment classification, World Ocean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10398409 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network
Authors: Nasrin Bakhshizadeh, Ashkan Forootan
Abstract:
A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.
Keywords: Polyethylene, polymerization, density, melt index, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6868408 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance
Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass
Abstract:
For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.
Keywords: Temporal differencing, video summarization, histogram differencing, sum conditional variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16958407 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: Web log data, web user profile, user interest, noise web data learning, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17348406 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.
Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15298405 Two-Level Identification of HVAC Consumers for Demand Response Potential Estimation Based on Setpoint Change
Authors: M. Naserian, M. Jooshaki, M. Fotuhi-Firuzabad, M. Hossein Mohammadi Sanjani, A. Oraee
Abstract:
In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a solution is presented to uncover consumers with high air conditioner demand among a large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.
Keywords: Data-driven analysis, demand response, direct load control, HVAC system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408404 Visualisation and Navigation in Large Scale P2P Service Networks
Authors: H. Unger, H. Coltzau
Abstract:
In Peer-to-Peer service networks, where peers offer any kind of publicly available services or applications, intuitive navigation through all services in the network becomes more difficult as the number of services increases. In this article, a concept is discussed that enables users to intuitively browse and use large scale P2P service networks. The concept extends the idea of creating virtual 3D-environments solely based on Peer-to-Peer technologies. Aside from browsing, users shall have the possibility to emphasize services of interest using their own semantic criteria. The appearance of the virtual world shall intuitively reflect network properties that may be of interest for the user. Additionally, the concept comprises options for load- and traffic-balancing. In this article, the requirements concerning the underlying infrastructure and the graphical user interface are defined. First impressions of the appearance of future systems are presented and the next steps towards a prototypical implementation are discussed.
Keywords: Internet Operating System, Peer-To-Peer, Service Exploration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12838403 Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods
Authors: M. Rüstü Karaman, Tekin Susam, Fatih Er, Servet Yaprak, Osman Karkacıer
Abstract:
Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.Keywords: Geostatistic, kriging, organic matter, sugarbeet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15718402 Moving Data Mining Tools toward a Business Intelligence System
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17438401 Analysis of Diverse Clustering Tools in Data Mining
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.
Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22028400 A Model Suggestion on Competitiveness and Sustainability of SMEs in Developing Countries
Authors: Ahmet Diken, Tahsin Karabulut
Abstract:
The factor which developing countries are in need is capital. Such countries make an effort to increase their income in order to meet their expenses for employment, infrastructure, superstructure investments, education, health and defense. The sole income of the countries is taxes collected from businesses. The businesses should drive profit and return in order to be able to toll. In a world where competition exists, different strategies may be followed by business in developing countries and they must specify their target markets. İn order to minimize cost and maximize profit, SMEs have to concentrate on target markets and select cost oriented strategy. In this study, a theoretical model is suggested that SME firms have to act as cluster between each other, and also must be optimal provider for large scale firms. SMEs’ policy must be supported by public. This relationship can benefit large scale firms to have brand over the world, and this organization increases value added for developing countries.
Keywords: Competitiveness, sustainability, SMEs, developing countries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10528399 Effects of Biostimulant Application on Quali-Quantitative Characteristics of Cauliflower, Pepper and Fennel Crops under Organic and Conventional Fertilization
Authors: E. Tarantino, G. Disciglio, L. Frabboni, A. Libutti, G. Gatta, A. Gagliaridi, A. Tarantino
Abstract:
Nowadays, the main goal for modern horticultural production is an increase the quality. In recent years, the use of organic fertilizers or biostimulants that can be applied in agriculture to improve quali-quantitative crop yields has encountered increasing interest. Biostimulants are gaining importance also for their possible use in organic and sustainable agriculture, to avoid excessive fertilizer applications. Consecutive experimental trials were carried out in the Apulia region (southern Italy) on three herbaceous crops (cauliflower, pepper, fennel) grown in pots under conventional and organic fertilization systems without and with biostimulants. The aim was to determine the effects of three biostimulants (Siapton®10L, Micotech L, Lysodin Alga-Fert) on quali-quantitative yield characteristics. At harvest, the quali-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA), and when significant effects were detected, the means were compared using Tukey’s tests. These data show large differences in these yield characteristics between conventional and organic crops, particularly highlighting higher yields for the conventional crops, while variable results were generally observed when the biostimulants were applied. In this context, there were no effects of the biostimulants on the quantitative yield, whereas there were low positive effects on the qualitative characteristics, as related to higher dry matter content of cauliflower, and higher soluble solids content of pepper. Moreover, there were evident positive effects of the biostimulants with fennel, due to the lower nitrate content. These latter data are in line with most of the published literature obtained for other herbaceous crops.Keywords: Biostimulants, cauliflower, pepper, fennel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35708398 Flood Scenarios for Hydrological and Hydrodynamic Modelling
Authors: Md. Sharif Imam Ibne Amir, Mohammad Masud Kamal khan, Mohammad Golam Rasul, Raj H Sharma, Fatema Akram
Abstract:
Future flood can be predicted using the probable maximum flood (PMF). PMF is calculated using the historical discharge or rainfall data considering the other climatic parameters remaining stationary. However climate is changing globally and the key climatic variables are temperature, evaporation, rainfall and sea level rise are likely to change. To develop scenarios to a basin or catchment scale these important climatic variables should be considered. Nowadays scenario based on climatic variables is more suitable than PMF. Six scenarios were developed for a large Fitzroy basin and presented in this paper.
Keywords: Climate change, rainfall, potential evaporation, scenario, sea level rise (SLR), sub-catchment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3377