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Abstract—This paper presents a multiscale information measure of
Electroencephalogram (EEG) for analysis with a short data length.
A multiscale extension of permutation entropy (MPE) is capable of
fully reflecting the dynamical characteristics of EEG across different
temporal scales. However, MPE yields an imprecise estimation due
to coarse-grained procedure at large scales. We present an improved
MPE measure to estimate entropy more accurately with a short
time series. By computing entropies of all coarse-grained time series
and averaging those at each scale, it leads to the modified MPE
(MMPE) which provides an enhanced accuracy as compared to
MPE. Simulation and experimental studies confirmed that MMPE
has proved its capability over MPE in terms of accuracy.
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I. INTRODUCTION

OVER a few decades, the most common quantitative

Electroencephalogram (EEG) analysis was frequency

analysis, which is based on an assumption of stationarity of

a signal. To address the nonlinear and nonstationary nature of

EEG signals, a number of time-frequency analyses have been

recently applied to analysis of EEG [1], [2], [3]. However, the

time-frequency analysis methods, which decompose the signal

into several stationary monocomponent signals, fail to reflect

the dynamic changes of EEG signals effectively. Alternatively,

a number of entropy measures have been utilized for dealing

with nonlinearity and nonstationarity in EEG signals. Entropy

is a measure of the complexity or the regularity of a time

series, thus being able to describe nonlinear dynamics [4].

Various studies have found that a reduction in entropy has

been generally observed in case when the brain is under an

abnormal state [5], [6].

One of the widely used entropy measures for analysis of

EEG is permutation entropy (PE). PE has been developed

for quantifying the regularity for nonstationary and noisy

time-series [7]. Since PE evaluates the probability distribution

based on the temporal structure of a time series, the advantage

of PE resides in its simplicity and robustness, making it

suitable for real-time monitoring. Also, PE is not restricted

on the type of a time series, thus implying its appropriateness

for analyzing EEG signals [8], [9]. However, since PE is based

on single scale computation, it fails to reflect the dynamical

characteristics across multiple temporal scales. Motivated by

a multiscale entropy approach [10], multiscale based PE has

been developed, which consists of a coarse-graining procedure
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and the following estimation of PE, referred to as multiscale

PE (MPE) [11]. It is found that MPE is able to measure

the values of PE in different scales and is more robust than

other multiscale based entropy measures in the presence of

artifacts and observational noise [11]. Unfortunately, due to

the use of a coarse-grained procedure, MPE suffers from an

inaccurate estimation of entropy at large scales, which often

occurs in dealing with EEG. Subsequently, MPE results in

an imprecise estimation of PE in the case of a short time

series. In this paper, to address this unreliable estimation of

MPE with a short time series, an improved MPE in terms of

accuracy is presented. The proposed MPE takes into account

all available coarse-grained time series at each scale, followed

by averaging the values of PE of all coarse-grained time series,

which is referred to as modified MPE (MMPE). Through

the simulations using two synthetic noise signals, i.e., white

and 1/f noises, the MMPE measure possesses an improved

accuracy over the conventional MPE even at large scales. Next,

MMPE was applied to the real normal and epileptic EEG

recordings to validate its effectiveness in detecting epileptic

seizue as compared to MPE.

II. METHODS

A. Permutation Entropy (PE)

PE is a parameter that can quantify the organization degree

of a given time series. The key idea of PE proposed in [7] is

to associate a symbolic sequence to the time series. The time

series is transformed into a series of ordinal patterns which

describes the order relations between the present values and a

fixed number of equidistant values at a given past times. Based

on the counting of ordinal patterns, PE quantifies the relative

frequencies of occurrence of the distinct ordinal patterns.

For a given time series {x(i), i = 1, . . . , N}, we can

embed the time series in a m-dimensional space to obtain a

reconstruction vector X(i),

X(i) = {x(i), x(i+ τ), . . . , x(i+ (m− 1)τ)}, (1)

where m and τ denote the embedding dimension and the delay

time, respectively. Then, reconstruction components of each

vector X(i) can be rearranged in an increasing order. In case

when two components in X(i) are equal, i.e., x(i + (j1 −
1)τ) = x(i + (j2 − 1)τ), those are sorted according to the

values of their corresponding j’s, namely, if j1 < j2, then,

x(i+(j1−1)τ) ≤ x(i+(j2−1)τ) is taken. Hence, any vector

X(i) can be uniquely transformed onto a symbol sequence,

A(g) = [j1, j2, . . . , jm], (2)
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where g = 1, 2, . . . , k, and k ≤ m! and A(g) is one of the m!
permutation of m distinct symbol sequences [j1, j2, . . . , jm].
The relative frequency of occurrence of permutation pattern π
is denoted as p(π) and given by

p(π) =
#{X(i)|X(i) has ordinal pattern π}

N − (m− 1)τ
, (3)

where # denotes the number of elements in the set. Thus, a

probability distribution P = {p(πi), i = 1, . . . ,m!} is defined.

Subsequently, for the embedding dimension m, and delay time

τ , PE is computed based on the framework of Shannon entropy

[4] as:

Spe(m) = −
m!∑

j=1

p(πj) log(p(πj)), (4)

where Spe(m, τ) is denoted as PE. The maximum value

of Spe(m) is log(m!) when all permutations of the time

series occur with equal probability. The normalized version

of Spe(m) is obtained as

Ŝpe(m) =
Spe(m)

log(m!)
. (5)

Hereafter, PE refers to the normalized Spe(m), namely,

Ŝpe(m). It has been known that the length of time series, N ,

is constrained as m! ≤ N − (m− 1)τ [12].

B. Multiscale PE (MPE)
Based on the framework of multiscale entropy approach

[10], MPE has been developed to estimate entropy of a time

series over multiple time scales and is conducted as:

1) For a given time series {x(i), i = 1, . . . , N}, construct

the consecutive coarse-grained time series, {ys(j), j =
1, 2, . . . , N/s}, as

ys(j) =
1

s

js∑

i=(j−1)s+1

x(i), 1 ≤ j ≤ N/s, (6)

where s is the scale factor and ys(j) denotes a

coarse-grained time series at a scale factor of s.

2) Calculate PE of coarse-grained time series ys(j) on

different scales. The resultant entropy measure is

referred to as MPE.

C. Modified MPE (MMPE)
Although MPE is capable of measuring the regularity

of a time series over multiple scales, the length of the

coarse-grained time series is substantially reduced especially

for large scales. To address this inaccuracy issue, a modified

MPE is presented which consists of two steps: First, all

possible coarse-grained time series at each scale are obtained.

Next, for each scale, by averaging the values of PE of all

coarse-grained time series, it leads to the modified MPE

(MMPE). The detailed procedures are as:

1) For a scale factor of s, a lth coarse-grained time series

is obtained as

ysl (j) =
1

s

js+l−1∑

i=(j−1)s+l

x(i), 1 ≤ j ≤ N/s, 1 ≤ l ≤ s.

(7)
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Fig. 1 Results of MPE and MMPE estimation of white noise of different
data lengths (m = 4): (a) N = 1000, (b) N = 10000

Note that the all coarse-grained time series correspond to

the coarse-grained procedures different starting points.

Thus, there exist all s coarse-grained time series at a

scale factor of s.

2) Calculate the PEs of s coarse-grained time series at a

scale factor s and average all s values of PE. Then, the

resultant MMPE at a scale factor of s is given by

MMPE(m, s) =
1

s

s∑

l=1

Ŝpe(y
s
l ,m), 1 ≤ j ≤ N/s,

(8)

where ys
l = {ysl (1), ysl (2), . . . , ysl (�N/τ�)} and �p� is

the largest integer less than p.

It is noted when only the first coarse-grained time series, ys
1,

is used to compute PE, MMPE is equal to MPE.

III. RESULTS

To test the capability of the proposed MMPE, simulation

studies using two synthetic noise signals and experimental

studies using real EEG signals recorded from healthy and

injured subjects were carried out.

A. Simulations

In order to validate the estimation performance of MMPE

depending on a data length as compared with the conventional

MPE, the white and 1/f noise signals with different data

lengths were used. To assess the statistical characteristics, the

mean and the standard deviation (SD) of the entropy values of
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Fig. 2 Results of MPE and MMPE estimation of 1/f noise of different data
lengths (m = 4): (a) N = 1000, (b) N = 10000

MPE and MMPE were taken over 100 independent simulated

signals. Here, the embedding dimension m = 4 and the delay

time τ = 1 were used. Figs. 1(a) and 1(b) show the entropy

estimation of white noise with 1/f noise with N = 1000, and

10000, respectively. The error bar exhibits the SD value of an

entropy value at each scale. In the figures, the mean values

of MPE and MMPE are not highly discriminative regardless

of a data length, while MPE more fluctuates over different

scales. On the other hand, it is apparent that the SD values

of MMPE are much less than those of MPE for all scales

except a scale factor of 1. For MPE, the higher a scale factor

is, the larger the SD value of entropy is. Comparing to MPE,

the SD values of MMPE are kept smaller even at large scale

factors. Figs. 2(a)-2(b) exhibit the entropy estimations of 1/f
noise with different data lengths. Similar results of Fig. 1 were

observed in Fig. 2 in that we observed a noticeable difference

of the SD values, especially at large scales. In addition, for

both white and 1/f noise, it is evident that the larger the scale

factor is, the less the variance of MMPE is.

B. Application to Normal and Epileptic EEG Signals

This study used an EEG dataset which is publicly available

online for epilepsy research literature [13]. The dataset

consists of five subsets (denoted as Z, O, N, F, and S),

which each set contains 100 single channel EEG segments

of 23.6 s duration. These EEG signals have been selected

from continuous multichannel EEG recordings after visual

inspection for artifact rejection. The sets Z and O have been
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Fig. 3 Representative EEG recordings of three classes: (a) normal EEG
recording, (b) interictal (seizure-free) EEG recording, (c) ictal (seizure) EEG

recording

obtained from five healthy volunteers with eye open and

closed, respectively. The sets N and F have been recorded in

seizure-free intervals from five patients in the epileptic zone

(set F) and from the hippocampal formation of the opposite

hemisphere of the brain (set N), which are referred to as

interictal EEG recordings. Finally, the set S have been taken

in ictal periods from patients, containing seizure activity. The

set Z and O have been measured extracranially with standard

electrode locations by international 10-20 system, while the

sets N, F and S have been recorded from intracranially. All

EEG signals were sampled with 173.61 Hz using 12-bit A/D

resolution and ranges in the spectral bandwidth from 0.5 to 85

Hz. In addition, the EEG recordings have been recorded 128

channel amplifier setup with an average common reference.

In this study, the sets N (normal), Z (interictal), and S (ictal)

are chosen to estimate the multiscale entropies. Figs. 3(a)-3(c)

show the representative EEG recordings for normal, interictal

and ictal periods, respectively. In this study, the parameters of

m = 3 and τ = 1 were chosen.

Fig. 4 shows the comparison results of MPE and MMPE

for three different groups, i.e., normal, interictal, and ictal

EEG recordings. As can be seen, for both MPE and MPE, the

mean values of entropies of normal EEG recording are higher

than those of other two groups across all scales. Between

interictal and ictal groups, the entropy values of ictal EEG

recordings indicate lower level than those of interictal ones.

In both figures, it is apparent that the variances of MMPE are

smaller than those of MPE at most scale factors, implying its

improved accuracy for estimating entropy.
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Fig. 4 Results of MPE and MMPE of normal, interictal, and ictal EEG
recordings with a window length of 2 sec (m = 3): (a) MPE, (b) MMPE
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Fig. 5 Results of Fisher’s discrimination indexes of MPE and MMPE using
ANOVA test

To validate the distinguishability of MMPE with three

different EEG recordings, the one-way analysis of variance

(ANOVA) test was carried out. The Fishers discrimination

index, called F index, which is the ratio of between-group

scatter and within-group scatter, was used as a discrimination

criterion. The higher the F index is, the better the entropy

measure discriminates the different groups,. i.e., normal,

interictal, and ictal EEG recordings. Fig. 5 depicts the results

of the F indexes of MPE and MMPE with the window lengths

of 2 and 3 sec, respectively. In the figures, MMPE exhibits

higher values of F index than MPE at all scale factors,

implying the improved capability of discrimination for short

EEG recordings. This results suggest that MMPE is a potential

tool for online and real-time seizure detection with EEG

signal.

IV. CONCLUSION

This paper has presented a multiscale PE which significantly

enhances accuracy of estimation of entropy in the case of a

short time series. By incorporating PEs of all coarse-grained

time series and averaging those, MMPE yields a reliable

multiscale based entropy measure for a short time series.

Through the simulation and experimental studies, MMPE has

shown its effectiveness to estimate entropy more accurately,

especially at large scales.

REFERENCES

[1] R. Schuyler, A. White, K. Staley, and K. J. Cios, “Epileptic seizure
detection,” Engineering in Medicine and Biology Magazine, IEEE,
vol. 26, no. 2, pp. 74–81, 2007.

[2] H. Adeli, Z. Zhou, and N. Dadmehr, “Analysis of eeg records in
an epileptic patient using wavelet transform,” Journal of neuroscience
methods, vol. 123, no. 1, pp. 69–87, 2003.

[3] S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr, “Mixed-band
wavelet-chaos-neural network methodology for epilepsy and epileptic
seizure detection,” Biomedical Engineering, IEEE Transactions on,
vol. 54, no. 9, pp. 1545–1551, 2007.

[4] C. E. Shannon, “Communication theory of secrecy systems*,” Bell
system technical journal, vol. 28, no. 4, pp. 656–715, 1949.

[5] V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate entropy-based
epileptic eeg detection using artificial neural networks,” Information
Technology in Biomedicine, IEEE Transactions on, vol. 11, no. 3, pp.
288–295, 2007.

[6] N. Kannathal, M. L. Choo, U. R. Acharya, and P. Sadasivan, “Entropies
for detection of epilepsy in eeg,” Computer methods and programs in
biomedicine, vol. 80, no. 3, pp. 187–194, 2005.

[7] C. Bandt and B. Pompe, “Permutation entropy: a natural complexity
measure for time series,” Physical Review Letters, vol. 88, no. 17, p.
174102, 2002.

[8] N. Nicolaou and J. Georgiou, “The use of permutation entropy
to characterize sleep electroencephalograms,” Clinical EEG and
Neuroscience, vol. 42, no. 1, pp. 24–28, 2011.

[9] X. Li, G. Ouyang, and D. A. Richards, “Predictability analysis of
absence seizures with permutation entropy,” Epilepsy research, vol. 77,
no. 1, pp. 70–74, 2007.

[10] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy
analysis of complex physiologic time series,” Physical review letters,
vol. 89, no. 6, p. 068102, 2002.

[11] W. Aziz and M. Arif, “Multiscale permutation entropy of physiological
time series,” in 9th International Multitopic Conference, IEEE INMIC
2005. IEEE, 2005, pp. 1–6.
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