Search results for: Distributed Data Mining
7613 Optimal Control of Piezo-Thermo-Elastic Beams
Authors: Marwan Abukhaled, Ibrahim Sadek
Abstract:
This paper presents the vibrations suppression of a thermoelastic beam subject to sudden heat input by a distributed piezoelectric actuators. An optimization problem is formulated as the minimization of a quadratic functional in terms of displacement and velocity at a given time and with the least control effort. The solution method is based on a combination of modal expansion and variational approaches. The modal expansion approach is used to convert the optimal control of distributed parameter system into the optimal control of lumped parameter system. By utilizing the variational approach, an explicit optimal control law is derived and the determination of the corresponding displacement and velocity is reduced to solving a set of ordinary differential equations.
Keywords: Optimal control, Thermoelastic beam, variational approach, modal expansion approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14167612 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –
Authors: Reinhold Decker, Christian Holsing, Sascha Lerke
Abstract:
This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12007611 Estimation of Train Operation Using an Exponential Smoothing Method
Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono
Abstract:
The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.
Keywords: Exponential smoothing method, open data, operation estimation, train schedule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7147610 Face Recognition using a Kernelization of Graph Embedding
Authors: Pang Ying Han, Hiew Fu San, Ooi Shih Yin
Abstract:
Linearization of graph embedding has been emerged as an effective dimensionality reduction technique in pattern recognition. However, it may not be optimal for nonlinearly distributed real world data, such as face, due to its linear nature. So, a kernelization of graph embedding is proposed as a dimensionality reduction technique in face recognition. In order to further boost the recognition capability of the proposed technique, the Fisher-s criterion is opted in the objective function for better data discrimination. The proposed technique is able to characterize the underlying intra-class structure as well as the inter-class separability. Experimental results on FRGC database validate the effectiveness of the proposed technique as a feature descriptor.Keywords: Face recognition, Fisher discriminant, graph embedding, kernelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17017609 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification
Authors: Essam Al-Daoud
Abstract:
Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20207608 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow
Authors: Md Abdullah Al Faruque, Ram Balachandar
Abstract:
An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions, which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.Keywords: Open channel flow, smooth bed, rough bed, Reynolds number, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22447607 Effect of DG Installation in Distribution System for Voltage Monitoring Scheme
Authors: S. R. A. Rahim, I. Musirin, M. M. Othman, M. H. Hussain
Abstract:
Loss minimization is a long progressing issue mainly in distribution system. Nevertheless its effect led to temperature rise due to significant voltage drop through the distribution line. Thus, compensation scheme should be proper scheduled in the attempt to alleviate the voltage drop phenomenon. Distributed generation has been profoundly known for voltage profile improvement; provided that over-compensation or under-compensation phenomena are avoided. This paper addresses the issue of voltage improvement through different type DG installation. In ensuring optimal sizing and location of the DGs, pre-developed EMEFA technique was made use for this purpose. Incremental loading condition subjected to the system is the concern such that it is beneficial to the power system operator.
Keywords: Distributed generation, EMEFA, power loss, voltage profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20177606 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants
Authors: Malinwo Estone Ayikpa
Abstract:
Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.
Keywords: Distribution system, losses, photovoltaic generation, primal-dual interior point method, reactive power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10807605 Optimising Data Transmission in Heterogeneous Sensor Networks
Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read
Abstract:
The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.
Keywords: Wireless sensor networks, remote method invocation, transmission time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20377604 Designing Ontology-Based Knowledge Integration for Preprocessing of Medical Data in Enhancing a Machine Learning System for Coding Assignment of a Multi-Label Medical Text
Authors: Phanu Waraporn
Abstract:
This paper discusses the designing of knowledge integration of clinical information extracted from distributed medical ontologies in order to ameliorate a machine learning-based multilabel coding assignment system. The proposed approach is implemented using a decision tree technique of the machine learning on the university hospital data for patients with Coronary Heart Disease (CHD). The preliminary results obtained show a satisfactory finding that the use of medical ontologies improves the overall system performance.
Keywords: Medical Ontology, Knowledge Integration, Machine Learning, Medical Coding, Text Assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18507603 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.Keywords: Data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11257602 Context-aware Recommender Systems using Data Mining Techniques
Authors: Kyoung-jae Kim, Hyunchul Ahn, Sangwon Jeong
Abstract:
This study proposes a novel recommender system to provide the advertisements of context-aware services. Our proposed model is designed to apply a modified collaborative filtering (CF) algorithm with regard to the several dimensions for the personalization of mobile devices – location, time and the user-s needs type. In particular, we employ a classification rule to understand user-s needs type using a decision tree algorithm. In addition, we collect primary data from the mobile phone users and apply them to the proposed model to validate its effectiveness. Experimental results show that the proposed system makes more accurate and satisfactory advertisements than comparative systems.Keywords: Location-based advertisement, Recommender system, Collaborative filtering, User needs type, Mobile user.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21747601 Semi-Automatic Method to Assist Expert for Association Rules Validation
Authors: Amdouni Hamida, Gammoudi Mohamed Mohsen
Abstract:
In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process.Keywords: Association rules, Rule-based classification, Classification quality, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17917600 FWM Wavelength Conversion Analysis in a 3-Integrated Portion SOA and DFB Laser using Coupled Wave Approach and FD-BPM Method
Authors: M. K. Moazzam, A. Salmanpour, M. Nirouei
Abstract:
In this paper we have numerically analyzed terahertzrange wavelength conversion using nondegenerate four wave mixing (NDFWM) in a SOA integrated DFB laser (experiments reported both in MIT electronics and Fujitsu research laboratories). For analyzing semiconductor optical amplifier (SOA), we use finitedifference beam propagation method (FDBPM) based on modified nonlinear SchrÖdinger equation and for distributed feedback (DFB) laser we use coupled wave approach. We investigated wavelength conversion up to 4THz probe-pump detuning with conversion efficiency -5dB in 1THz probe-pump detuning for a SOA integrated quantum-wellKeywords: distributed feedback laser, nondegenerate fourwave mixing, semiconductor optical amplifier, wavelengthconversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15067599 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data
Authors: Chen Chou, Feng-Tyan Lin
Abstract:
Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.
Keywords: Big Data, ITS, influence range, living area, central place theory, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9767598 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.
Keywords: IDS, DDoS, MLP, KDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7277597 Asynchronous Parallel Distributed Genetic Algorithm with Elite Migration
Authors: Kazunori Kojima, Masaaki Ishigame, Goutam Chakraborty, Hiroshi Hatsuo, Shozo Makino
Abstract:
In most of the popular implementation of Parallel GAs the whole population is divided into a set of subpopulations, each subpopulation executes GA independently and some individuals are migrated at fixed intervals on a ring topology. In these studies, the migrations usually occur 'synchronously' among subpopulations. Therefore, CPUs are not used efficiently and the communication do not occur efficiently either. A few studies tried asynchronous migration but it is hard to implement and setting proper parameter values is difficult. The aim of our research is to develop a migration method which is easy to implement, which is easy to set parameter values, and which reduces communication traffic. In this paper, we propose a traffic reduction method for the Asynchronous Parallel Distributed GA by migration of elites only. This is a Server-Client model. Every client executes GA on a subpopulation and sends an elite information to the server. The server manages the elite information of each client and the migrations occur according to the evolution of sub-population in a client. This facilitates the reduction in communication traffic. To evaluate our proposed model, we apply it to many function optimization problems. We confirm that our proposed method performs as well as current methods, the communication traffic is less, and setting of the parameters are much easier.Keywords: Parallel Distributed Genetic Algorithm (PDGA), asynchronousPDGA, Server-Client configuration, Elite Migration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13727596 A Web Pages Automatic Filtering System
Authors: O. Nouali, A. Saidi, H. Chahrat, A. Krinah, B. Toursel
Abstract:
This article describes a Web pages automatic filtering system. It is an open and dynamic system based on multi agents architecture. This system is built up by a set of agents having each a quite precise filtering task of to carry out (filtering process broken up into several elementary treatments working each one a partial solution). New criteria can be added to the system without stopping its execution or modifying its environment. We want to show applicability and adaptability of the multi-agents approach to the networks information automatic filtering. In practice, most of existing filtering systems are based on modular conception approaches which are limited to centralized applications which role is to resolve static data flow problems. Web pages filtering systems are characterized by a data flow which varies dynamically.Keywords: Agent, Distributed Artificial Intelligence, Multiagents System, Web pages filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13777595 Stress Concentration around Countersunk Hole in Isotropic Plate under Transverse Loading
Authors: Parveen K. Saini, Tarun Agarwal
Abstract:
An investigation into the effect of countersunk depth, plate thickness, countersunk angle and plate width on the stress concentration around countersunk hole is carried out with the help of finite element analysis. The variation of stress concentration with respect to these parameters is studied for three types of loading viz. uniformly distributed load, uniformly varying load and functionally distributed load. The results of the finite element analysis are interpreted and some conclusions are drawn. The distribution of stress concentration around countersunk hole in isotropic plates simply supported at all the edges is found similar and is independent of loading. The maximum stress concentration also occurs at a particular point irrespective of the loading conditions.
Keywords: Stress Concentration Factor, Countersunk hole, Finite element, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33177594 An Agent Oriented Approach to Operational Profile Management
Authors: Sunitha Ramanujam, Hany El Yamany, Miriam A. M. Capretz
Abstract:
Software reliability, defined as the probability of a software system or application functioning without failure or errors over a defined period of time, has been an important area of research for over three decades. Several research efforts aimed at developing models to improve reliability are currently underway. One of the most popular approaches to software reliability adopted by some of these research efforts involves the use of operational profiles to predict how software applications will be used. Operational profiles are a quantification of usage patterns for a software application. The research presented in this paper investigates an innovative multiagent framework for automatic creation and management of operational profiles for generic distributed systems after their release into the market. The architecture of the proposed Operational Profile MAS (Multi-Agent System) is presented along with detailed descriptions of the various models arrived at following the analysis and design phases of the proposed system. The operational profile in this paper is extended to comprise seven different profiles. Further, the criticality of operations is defined using a new composed metrics in order to organize the testing process as well as to decrease the time and cost involved in this process. A prototype implementation of the proposed MAS is included as proof-of-concept and the framework is considered as a step towards making distributed systems intelligent and self-managing.Keywords: Software reliability, Software testing, Metrics, Distributed systems, Multi-agent systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18577593 SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data
Authors: Sarabjeet Kaur Kochhar
Abstract:
With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination.Keywords: Data Streams, User subjectivity, Change detection, Association rule profiles, Predictability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14587592 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu
Abstract:
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18487591 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.
Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9207590 Review and Experiments on SDMSCue
Authors: Ashraf Anwar
Abstract:
In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.Keywords: Artificial intelligence, recall, recognition, SDM, SDMSCue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13737589 Application of Artificial Neural Network to Classification Surface Water Quality
Authors: S. Wechmongkhonkon, N.Poomtong, S. Areerachakul
Abstract:
Water quality is a subject of ongoing concern. Deterioration of water quality has initiated serious management efforts in many countries. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (TColiform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of canals in Dusit district in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 96.52% in classifying the water quality of Dusit district canal in Bangkok Subsequently, this encouraging result could be applied with plan and management source of water quality.Keywords: artificial neural network, classification, surface water quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32097588 Rule-Based Message Passing for Collaborative Application in Distributed Environments
Authors: Wataru Yamazaki, Hironori Hiraishi, Fumio Mizoguchi
Abstract:
In this paper, we describe a rule-based message passing method to support developing collaborative applications, in which multiple users share resources in distributed environments. Message communications of applications in collaborative environments tend to be very complex because of the necessity to manage context situations such as sharing events, access controlling of users, and network places. In this paper, we propose a message communications method based on unification of artificial intelligence and logic programming for defining rules of such context information in a procedural object-oriented programming language. We also present an implementation of the method as java classes.
Keywords: agent programming, logic programming, multi-media application, collaborative application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14327587 An Intelligent Approach of Rough Set in Knowledge Discovery Databases
Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das
Abstract:
Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23367586 Lexical Database for Multiple Languages: Multilingual Word Semantic Network
Authors: K. K. Yong, R. Mahmud, C. S. Woo
Abstract:
Data mining and knowledge engineering have become a tough task due to the availability of large amount of data in the web nowadays. Validity and reliability of data also become a main debate in knowledge acquisition. Besides, acquiring knowledge from different languages has become another concern. There are many language translators and corpora developed but the function of these translators and corpora are usually limited to certain languages and domains. Furthermore, search results from engines with traditional 'keyword' approach are no longer satisfying. More intelligent knowledge engineering agents are needed. To address to these problems, a system known as Multilingual Word Semantic Network is proposed. This system adapted semantic network to organize words according to concepts and relations. The system also uses open source as the development philosophy to enable the native language speakers and experts to contribute their knowledge to the system. The contributed words are then defined and linked using lexical and semantic relations. Thus, related words and derivatives can be identified and linked. From the outcome of the system implementation, it contributes to the development of semantic web and knowledge engineering.
Keywords: Multilingual, semantic network, intelligent knowledge engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19637585 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data
Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch
Abstract:
It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25237584 On Bounding Jayanti's Distributed Mutual Exclusion Algorithm
Authors: Awadhesh Kumar Singh
Abstract:
Jayanti-s algorithm is one of the best known abortable mutual exclusion algorithms. This work is an attempt to overcome an already known limitation of the algorithm while preserving its all important properties and elegance. The limitation is that the token number used to assign process identification number to new incoming processes is unbounded. We have used a suitably adapted alternative data structure, in order to completely eliminate the use of token number, in the algorithm.
Keywords: Abortable, deterministic, local spin, mutual exclusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273