Search results for: Clinical Decision Support System.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10700

Search results for: Clinical Decision Support System.

10130 Application of Neural Networks in Financial Data Mining

Authors: Defu Zhang, Qingshan Jiang, Xin Li

Abstract:

This paper deals with the application of a well-known neural network technique, multilayer back-propagation (BP) neural network, in financial data mining. A modified neural network forecasting model is presented, and an intelligent mining system is developed. The system can forecast the buying and selling signs according to the prediction of future trends to stock market, and provide decision-making for stock investors. The simulation result of seven years to Shanghai Composite Index shows that the return achieved by this mining system is about three times as large as that achieved by the buy and hold strategy, so it is advantageous to apply neural networks to forecast financial time series, the different investors could benefit from it.

Keywords: Data mining, neural network, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3590
10129 Face Recognition with PCA and KPCA using Elman Neural Network and SVM

Authors: Hossein Esbati, Jalil Shirazi

Abstract:

In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained.

Keywords: Face recognition, Principal Component Analysis, Kernel Principal Component Analysis, Neural network, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
10128 Uncertainty Multiple Criteria Decision Making Analysis for Stealth Combat Aircraft Selection

Authors: C. Ardil

Abstract:

Fuzzy set theory and its extensions (intuitionistic fuzzy sets, picture fuzzy sets, and neutrosophic sets) have been widely used to address imprecision and uncertainty in complex decision-making. However, they may struggle with inherent indeterminacy and inconsistency in real-world situations. This study introduces uncertainty sets as a promising alternative, offering a structured framework for incorporating both types of uncertainty into decision-making processes.This work explores the theoretical foundations and applications of uncertainty sets. A novel decision-making algorithm based on uncertainty set-based proximity measures is developed and demonstrated through a practical application: selecting the most suitable stealth combat aircraft.

The results highlight the effectiveness of uncertainty sets in ranking alternatives under uncertainty. Uncertainty sets offer several advantages, including structured uncertainty representation, robust ranking mechanisms, and enhanced decision-making capabilities due to their ability to account for ambiguity.Future research directions are also outlined, including comparative analysis with existing MCDM methods under uncertainty, sensitivity analysis to assess the robustness of rankings,and broader application to various MCDM problems with diverse complexities. By exploring these avenues, uncertainty sets can be further established as a valuable tool for navigating uncertainty in complex decision-making scenarios.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty proximity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186
10127 Decision Tree Modeling in Emergency Logistics Planning

Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: Decision tree modeling, Forecasting, Humanitarian relief, emergency supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3307
10126 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.

Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
10125 The Proposal of a Shared Mobility City Index to Support Investment Decision Making for Carsharing

Authors: S. Murr, S. Phillips

Abstract:

One of the biggest challenges entering a market with a carsharing or any other shared mobility (SM) service is sound investment decision-making. To support this process, the authors think that a city index evaluating different criteria is necessary. The goal of such an index is to benchmark cities along a set of external measures to answer the main two challenges: financially viability and the understanding of its specific requirements. The authors have consulted several shared mobility projects and industry experts to create such a Shared Mobility City Index (SMCI). The current proposal of the SMCI consists of 11 individual index measures: general data (demographics, geography, climate and city culture), shared mobility landscape (current SM providers, public transit options, commuting patterns and driving culture) and political vision and goals (vision of the Mayor, sustainability plan, bylaws/tenders supporting SM). To evaluate the suitability of the index, 16 cities on the East Coast of North America were selected and secondary research was conducted. The main sources of this study were census data, organisational records, independent press releases and informational websites. Only non-academic sources where used because the relevant data for the chosen cities is not published in academia. Applying the index measures to the selected cities resulted in three major findings. Firstly, density (city area divided by number of inhabitants) is not an indicator for the number of SM services offered: the city with the lowest density has five bike and carsharing options. Secondly, there is a direct correlation between commuting patterns and how many shared mobility services are offered. New York, Toronto and Washington DC have the highest public transit ridership and the most shared mobility providers. Lastly, except one, all surveyed cities support shared mobility with their sustainability plan. The current version of the shared mobility index is proving a practical tool to evaluate cities, and to understand functional, political, social and environmental considerations. More cities will have to be evaluated to refine the criteria further. However, the current version of the index can be used to assess cities on their suitability for shared mobility services and will assist investors deciding which city is a financially viable market.

Keywords: Carsharing, transportation, urban planning, shared mobility city index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
10124 Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method

Authors: Heri Hermansyah, Annisa Kurnia, A. Vania Anisya, Adi Surjosatyo, Yopi Sunarya, Rita Arbianti, Tania Surya Utami

Abstract:

Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH2) and anion (OH-) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH2) and anion (OH-) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support.

Keywords: Adsorption-Cross linking, lipase, resin, immobilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
10123 A Framework to Support the Design of Mobile Applications

Authors: E. Platzer

Abstract:

This paper introduces a framework that aims to support the design and development of mobile services. The traditional innovation process and its supporting instruments in form of creativity tools, acceptance research and user-generated content analysis are screened for potentials for improvement. The result is a reshaped innovation process where acceptance research and usergenerated content analysis are fully integrated within a creativity tool. Advantages of this method are the enhancement of design relevant information for developers and designers and the possibility to forecast market success.

Keywords: design support, innovation support, technology acceptance, user-generated content analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
10122 Power System Contingency Analysis Using Multiagent Systems

Authors: Anant Oonsivilai, Kenedy A. Greyson

Abstract:

The demand of the energy management systems (EMS) set forth by modern power systems requires fast energy management systems. Contingency analysis is among the functions in EMS which is time consuming. In order to handle this limitation, this paper introduces agent based technology in the contingency analysis. The main function of agents is to speed up the performance. Negotiations process in decision making is explained and the issue set forth is the minimization of the operating costs. The IEEE 14 bus system and its line outage have been used in the research and simulation results are presented.

Keywords: Agents, model, negotiation, optimal dispatch, powersystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
10121 Importance of Risk Assessment in Managers´ Decision-Making Process

Authors: Mária Hudáková, Vladimír Míka, Katarína Hollá

Abstract:

Making decisions is the core of management and a result of conscious activities which is under way in a particular environment and concrete conditions. The managers decide about the goals, procedures and about the methods how to respond to the changes and to the problems which developed. Their decisions affect the effectiveness, quality, economy and the overall successfulness in every organisation. In spite of this fact, they do not pay sufficient attention to the individual steps of the decision-making process. They emphasise more how to cope with the individual methods and techniques of making decisions and forget about the way how to cope with analysing the problem or assessing the individual solution variants. In many cases, the underestimating of the analytical phase can lead to an incorrect assessment of the problem and this can then negatively influence its further solution. Based on our analysis of the theoretical solutions by individual authors who are dealing with this area and the realised research in Slovakia and also abroad we can recognise an insufficient interest of the managers to assess the risks in the decision-making process. The goal of this paper is to assess the risks in the managers´ decision-making process relating to the conditions of the environment, to the subject’s activity (the manager’s personality), to the insufficient assessment of individual variants for solving the problems but also to situations when the arisen problem is not solved. The benefit of this paper is the effort to increase the need of the managers to deal with the risks during the decision-making process. It is important for every manager to assess the risks in his/her decision-making process and to make efforts to take such decisions which reflect the basic conditions, states and development of the environment in the best way and especially for the managers´ decisions to contribute to achieving the determined goals of the organisation as effectively as possible.

Keywords: Risk, decision-making, manager, process, analysis, source of risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
10120 Development of User Interface for Multiple Devices Connecting Path Planning System for Bus Network

Authors: Takahiro Takayama, Takao Kawamura, Toshihiko Sasama, Kazunori Sugahara

Abstract:

Recently, web services to access from many type devices are often used. We have developed the shortest path planning system called "Bus-Net" in Tottori prefecture as a web application to sustain the public transport. And it used the same user interface for both devices. To support both devices, the interface cannot use JavaScript and so on. Thus, we developed the method that use individual user interface for each device type to improve its convenience. To be concrete, we defined formats of condition input to the path planning system and result output from it and separate the system into the request processing part and user interface parts that depend on device types. By this method, we have also developed special device for Bus-Net named "Intelligent-Bus-Stop".

Keywords: Bus, Path planning, Public transport, User interface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
10119 Component Lifecycle and Concurrency Model in Usage Control (UCON) System

Authors: P. Ghann, J. Shiguang, C. Zhou

Abstract:

Access control is one of the most challenging issues facing information security. Access control is defined as, the ability to permit or deny access to a particular computational resource or digital information by an unauthorized user or subject. The concept of usage control (UCON) has been introduced as a unified approach to capture a number of extensions for access control models and systems. In UCON, an access decision is determined by three factors: authorizations, obligations and conditions. Attribute mutability and decision continuity are two distinct characteristics introduced by UCON for the first time. An observation of UCON components indicates that, the components are predefined and static. In this paper, we propose a new and flexible model of usage control for the creation and elimination of some of these components; for example new objects, subjects, attributes and integrate these with the original UCON model. We also propose a model for concurrent usage scenarios in UCON.

Keywords: Access Control, Concurrency, Digital container, Usage control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
10118 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: Decision tree, water quality, water pollution, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260
10117 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process

Authors: C. Ardil

Abstract:

The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.

Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
10116 A Mixed Integer Programming for Port Anzali Development Plan

Authors: Mahdieh Allahviranloo

Abstract:

This paper introduces a mixed integer programming model to find the optimum development plan for port Anzali. The model minimizes total system costs taking into account both port infrastructure costs and shipping costs. Due to the multipurpose function of the port, the model consists of 1020 decision variables and 2490 constraints. Results of the model determine the optimum number of berths that should be constructed in each period and for each type of cargo. In addition to, the results of sensitivity analysis on port operation quantity provide useful information for managers to choose the best scenario for port planning with the lowest investment risks. Despite all limitations-due to data availability-the model offers a straightforward decision tools to port planners aspiring to achieve optimum port planning steps.

Keywords: MILP, Multipurpose Terminal, Port Operation Optimization, Port Anzali.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
10115 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
10114 A New Intelligent, Dynamic and Real Time Management System of Sewerage

Authors: R. Tlili Yaakoubi, H. Nakouri, O. Blanpain, S. Lallahem

Abstract:

The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.

Keywords: Automation, optimization, paradigm, RTC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
10113 A Neuro-Fuzzy Approach Based Voting Scheme for Fault Tolerant Systems Using Artificial Bee Colony Training

Authors: D. Uma Devi, P. Seetha Ramaiah

Abstract:

Voting algorithms are extensively used to make decisions in fault tolerant systems where each redundant module gives inconsistent outputs. Popular voting algorithms include majority voting, weighted voting, and inexact majority voters. Each of these techniques suffers from scenarios where agreements do not exist for the given voter inputs. This has been successfully overcome in literature using fuzzy theory. Our previous work concentrated on a neuro-fuzzy algorithm where training using the neuro system substantially improved the prediction result of the voting system. Weight training of Neural Network is sub-optimal. This study proposes to optimize the weights of the Neural Network using Artificial Bee Colony algorithm. Experimental results show the proposed system improves the decision making of the voting algorithms.

Keywords: Voting algorithms, Fault tolerance, Fault masking, Neuro-Fuzzy System (NFS), Artificial Bee Colony (ABC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
10112 Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation

Authors: Chien-Min Chu, Bor-Wen Tsai, Kang-Tsung Chang

Abstract:

Landslide susceptibility map delineates the potential zones for landslide occurrence. Previous works have applied multivariate methods and neural networks for mapping landslide susceptibility. This study proposed a new approach to integrate decision tree model and spatial cluster statistic for assessing landslide susceptibility spatially. A total of 2057 landslide cells were digitized for developing the landslide decision tree model. The relationships of landslides and instability factors were explicitly represented by using tree graphs in the model. The local Getis-Ord statistics were used to cluster cells with high landslide probability. The analytic result from the local Getis-Ord statistics was classed to create a map of landslide susceptibility zones. The map was validated using new landslide data with 482 cells. Results of validation show an accuracy rate of 86.1% in predicting new landslide occurrence. This indicates that the proposed approach is useful for improving landslide susceptibility mapping.

Keywords: Landslide susceptibility Zonation, Decision treemodel, Spatial cluster, Local Getis-Ord statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
10111 Aerial Firefighting Aircraft Selection with Standard Fuzzy Sets using Multiple Criteria Group Decision Making Analysis

Authors: C. Ardil

Abstract:

Aircraft selection decisions can be challenging due to their multidimensional and interdisciplinary nature. They involve multiple stakeholders with conflicting objectives and numerous alternative options with uncertain outcomes. This study focuses on the analysis of aerial firefighting aircraft that can be chosen for the Air Fire Service to extinguish forest fires. To make such a selection, the characteristics of the fire zones must be considered, and the capability to manage the logistics involved in such operations, as well as the purchase and maintenance of the aircraft, must be determined. The selection of firefighting aircraft is particularly complex because they have longer fleet lives and require more demanding operation and maintenance than scheduled passenger air service. This paper aims to use the fuzzy proximity measure method to select the most appropriate aerial firefighting aircraft based on decision criteria using multiple attribute decision making analysis. Following fuzzy decision analysis, the most suitable aerial firefighting aircraft is ranked and determined for the Air Fire Service.

Keywords: Aerial firefighting aircraft selection, multiple criteria decision making, fuzzy sets, standard fuzzy sets, determinate fuzzy sets, indeterminate fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, MCDM, PMM, PMM-F

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
10110 Spatial Data Mining by Decision Trees

Authors: S. Oujdi, H. Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
10109 Comparing Academically Gifted and Non-Gifted Students- Supportive Environments in Jordan

Authors: Mustafa Qaseem Hielat, Ahmad Mohammad Al-Shabatat

Abstract:

Jordan exerts many efforts to nurture their academically gifted students in special schools since 2001. During the past nine years of launching these schools, their learning and excellence environments were believed to be distinguished compared to public schools. This study investigated the environments of gifted students compared with other non-gifted, using a survey instrument that measures the dimensions of family, peers, teachers, school- support, society, and resources –dimensions rooted deeply in supporting gifted education, learning, and achievement. A total number of 109 were selected from excellence schools for academically gifted students, and 119 non-gifted students were selected from public schools. Around 8.3% of the non-gifted students reported that they “Never" received any support from their surrounding environments, 14.9% reported “Seldom" support, 23.7% reported “ Often" support, 26.0% reported “Frequent" support, and 32.8% reported “Very frequent" support. Where the gifted students reported more “Never" support than the non-gifted did with 11.3%, “Seldom" support with 15.4%, “Often" support with 26.6%, “Frequent" support with 29.0%, and reported “Very frequent" support less than the non-gifted students with 23.6%. Unexpectedly, statistical differences were found between the two groups favoring non-gifted students in perception of their surrounding environments in specific dimensions, namely, school- support, teachers, and society. No statistical differences were found in the other dimensions of the survey, namely, family, peers, and resources. As the differences were found in teachers, school- support, and society, the nurturing environments for the excellence schools need to be revised to adopt more creative teaching styles, rich school atmosphere and infrastructures, interactive guiding for the students and their parents, promoting for the excellence environments, and re-build successful identification models. Thus, families, schools, and society should increase their cooperation, communication, and awareness of the gifted supportive environments. However, more studies to investigate other aspects of promoting academic giftedness and excellence are recommended.

Keywords: Academic giftedness, Supportive environment, Excellence schools, Gifted grouping, Gifted nurturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
10108 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: A. Amrani, O. Allali, A. Ben Hamida, F. Defrance, S. Morland, E. Pineau, T. Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: Climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
10107 Design and Analysis of Gauge R&R Studies: Making Decisions Based on ANOVA Method

Authors: Afrooz Moatari Kazerouni

Abstract:

In a competitive production environment, critical decision making are based on data resulted by random sampling of product units. Efficiency of these decisions depends on data quality and also their reliability scale. This point leads to the necessity of a reliable measurement system. Therefore, the conjecture process and analysing the errors contributes to a measurement system known as Measurement System Analysis (MSA). The aim of this research is on determining the necessity and assurance of extensive development in analysing measurement systems, particularly with the use of Repeatability and Reproducibility Gages (GR&R) to improve physical measurements. Nowadays in productive industries, repeatability and reproducibility gages released so well but they are not applicable as well as other measurement system analysis methods. To get familiar with this method and gain a feedback in improving measurement systems, this survey would be on “ANOVA" method as the most widespread way of calculating Repeatability and Reproducibility (R&R).

Keywords: Analysis of Variance (ANOVA), MeasurementSystem Analysis (MSA), Part-Operator interaction effect, Repeatability and Reproducibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4668
10106 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services

Authors: G. Feletti, D. Tedesco, P. Trucco

Abstract:

The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of a first phase of revision of the technical-scientific literature concerning the indicators currently in use for the performance measurement of EMS. It emerges that current studies focus on two distinct areas and independent objectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). Conversely, the perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal covers the end-to-end healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid even to EMS aspects that in current literature tend to be neglected or underestimated. In particular, the integration of the two processes enables to evaluate the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering, besides the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating firstly the ones not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draw us to exclude additional indicators due to unavailability of data required for their computation. The final dashboard, that was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness on EDs accessibility in real time. The association of each KPI to the EMS phase it refers to enabled the design of a well-balanced dashboard, covering both efficiency and effectiveness performance objectives of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient care are covered by traditional KPIs. Future developments could be directed to building a hierarchical dashboard, composed by a high-level minimal set of KPIs for measuring the basic performance of the EMS system, at an aggregate level, and lower levels of KPIs that bring additional and more detailed information on specific performance dimensions or EMS phases.

Keywords: Emergency Medical Services, Key Performance Indicators, Dashboard, Decision Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
10105 An Efficient Key Management Scheme for Secure SCADA Communication

Authors: Sungjin Lee, Donghyun Choi, Choonsik Park, Seungjoo Kim

Abstract:

A SCADA (Supervisory Control And Data Acquisition) system is an industrial control and monitoring system for national infrastructures. The SCADA systems were used in a closed environment without considering about security functionality in the past. As communication technology develops, they try to connect the SCADA systems to an open network. Therefore, the security of the SCADA systems has been an issue. The study of key management for SCADA system also has been performed. However, existing key management schemes for SCADA system such as SKE(Key establishment for SCADA systems) and SKMA(Key management scheme for SCADA systems) cannot support broadcasting communication. To solve this problem, an Advanced Key Management Architecture for Secure SCADA Communication has been proposed by Choi et al.. Choi et al.-s scheme also has a problem that it requires lots of computational cost for multicasting communication. In this paper, we propose an enhanced scheme which improving computational cost for multicasting communication with considering the number of keys to be stored in a low power communication device (RTU).

Keywords: SCADA system, SCADA communication, Key management, Distributed networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
10104 School Architecture of the Future Supported by Evidence-Based Design and Design Patterns

Authors: Pedro Padilha Gonçalves, Doris C. C. K. Kowaltowski, Benjamin Cleveland

Abstract:

Trends in education affect schooling, needing incorporation into design concepts to support desired learning processes with appropriate and stimulating environments. A design process for school architecture demands research, debates, reflections, and efficient decision-making methods. This paper presents research on evidence-based design, related to middle schools, based on a systematic literature review and the elaboration of a set of architectural design patterns, through a graphic translation of new concepts for classroom configurations, to support programming debates and the synthesis phase of design. The investigation resulted in nine patterns that configure the concepts of boundaries, flexibility, levels of openness, mindsets, neighborhoods, movement and interaction, territories, opportunities for learning, and sightlines for classrooms. The research is part of a continuous investigation of design methods, on contemporary school architecture to produce an architectural pattern matrix based on scientific information translated into an insightful graphic design language.

Keywords: School architecture, design process, design patterns, evidence-based design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
10103 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: Availability, design for maintenance, DFM, dynamic maintenance, life cycle cost, LCC, maintenance free operating period, MFOP, simultaneous optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
10102 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis

Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen

Abstract:

Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.

Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
10101 Managing Uncertainty in Unmanned Aircraft System Safety Performance Requirements Compliance Process

Authors: Achim Washington, Reece Clothier, Jose Silva

Abstract:

System Safety Regulations (SSR) are a central component to the airworthiness certification of Unmanned Aircraft Systems (UAS). There is significant debate on the setting of appropriate SSR for UAS. Putting this debate aside, the challenge lies in how to apply the system safety process to UAS, which lacks the data and operational heritage of conventionally piloted aircraft. The limited knowledge and lack of operational data result in uncertainty in the system safety assessment of UAS. This uncertainty can lead to incorrect compliance findings and the potential certification and operation of UAS that do not meet minimum safety performance requirements. The existing system safety assessment and compliance processes, as used for conventional piloted aviation, do not adequately account for the uncertainty, limiting the suitability of its application to UAS. This paper discusses the challenges of undertaking system safety assessments for UAS and presents current and envisaged research towards addressing these challenges. It aims to highlight the main advantages associated with adopting a risk based framework to the System Safety Performance Requirement (SSPR) compliance process that is capable of taking the uncertainty associated with each of the outputs of the system safety assessment process into consideration. Based on this study, it is made clear that developing a framework tailored to UAS, would allow for a more rational, transparent and systematic approach to decision making. This would reduce the need for conservative assumptions and take the risk posed by each UAS into consideration while determining its state of compliance to the SSR.

Keywords: Part 1309 regulations, unmanned aircraft systems, system safety, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134