


Abstract—Access control is one of the most challenging issues

facing information security. Access control is defined as, the ability to
permit or deny access to a particular computational resource or digital
information by an unauthorized user or subject. The concept of usage
control (UCON) has been introduced as a unified approach to capture a
number of extensions for access control models and systems. In
UCON, an access decision is determined by three factors:
authorizations, obligations and conditions. Attribute mutability and
decision continuity are two distinct characteristics introduced by
UCON for the first time. An observation of UCON components
indicates that, the components are predefined and static. In this paper,
we propose a new and flexible model of usage control for the creation
and elimination of some of these components; for example new
objects, subjects, attributes and integrate these with the original
UCON model. We also propose a model for concurrent usage
scenarios in UCON.

Keywords—Access Control, Concurrency, Digital container,
Usage control.

I. INTRODUCTION

SAGE control has been introduced as a comprehensive
access control model in a highly distributed network-

connected environment. Compared to traditional access control
models and their derivatives, where access decision is based on
only authorization, the concept of usage control (UCON) has
been introduced as an amalgamated approach to capture a
number of extensions for access control models and systems. In
UCON, a control decision is determined by three significant
factors: authorizations, obligations and conditions.
Additionally usage control also introduces attribute mutability
and decision continuity as two distinct and nascent
characteristics. The concept of usage control helps to address
current information technology needs especially in electronic
commerce: by providing additional features necessary for
access control. This provides a fine-grained control that helps
to achieve integrity, confidentiality and availability of
information or resource. Usage control decision can be
enforced by policies of authorization, obligation as well as
condition. Decision can also be enforced before (pre), during
(on) or after (post) access. In the process of enforcing usage
decision, actions may lead to change in the state of the system

Patricia Ghann is with the School of Computer Science and
Telecommunication Engineering, Jiangsu University, Jiangsu, China
(corresponding author, phone: +8618306105093, e-mail: pghann@gmail.com)

Ju Shiguang is with the School of Computer Science and
Telecommunication Engineering, Jiangsu University, Jiangsu, China (e-mail:
jushig@ujs.edu.cn)

Conghua Zhou is with the School of Computer Science and
Telecommunication Engineering, Jiangsu University,Jiangsu, China (phone:
+8613656138071, e-mail: chzhou@ujs.edu.cn)

or even status of access. These changes must conform to
policies of access hence access will be revoked. In other words
a granted access may be revoked by the system if certain
policies are not satisfied, based on changes in the subject or
object attributes, or environmental conditions, or some
obligations that are not fulfilled during the usage process.
Though UCON is a comprehensive concept compared to
traditional access control, it has been observed that most of it
components are predefined and static. In view of this our
contribution in this paper is to enhance on the expressiveness of
UCON by looking at the life cycle of the various components of
UCON such as subject, object and attributes. We also look at
concurrent usage scenarios of UCON since the original UCON
model considers single usage scenario. The rest of this paper is
presented as follows: Section II is on usage control and its
components. In Section III, we propose a lifecycle for the some
of the components of UCON. Section IV is on the storage of
objects in digital container. We come out with a model for
concurrent implementation of usage control using authorization
core models in Section V. Section V A is related work. And we
conclude this paper in Section VI.

II. USAGE CONTROL (UCON) AND ITS COMPONENTS

UCON model as mentioned earlier, addresses access control
challenges in modern application and computing environments.
Access permission in UCON is based on attributes and three
main decision factors, authorization, obligation and condition.
Significantly UCON enhances upon traditional access control
in two main aspects; mutability of attributes and continuity of
access decisions. The UCON model consist of eight core
components as shown in Fig. 1; subjects, subject attributes,
objects, object attributes, rights and three main decision factors;
authorization, obligation and condition [1]. Subjects and
objects are similar concept with traditional access control
models. Subject and object attributes are used during the
decision process. Subject attributes include identities, group
names, roles, membership, security clearance etc. Objects are
entities that subjects hold rights on and can therefore access the
object. Attributes of objects are properties of the object that is
used in decision process. These include security labels, class,
price, ownership etc. [2].

P. Ghann, J. Shiguang, C. Zhou

Component Lifecycle and Concurrency Model in
Usage Control (UCON) System

U

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:3, 2014

531International Scholarly and Scientific Research & Innovation 8(3) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

3,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

50
.p

df

Fig. 1 Components of Usage Control

III. UCON COMPONENTS’ LIFECYCLE

A. Subject and Subject Attributes

Subjects are entities that hold right on objects. In UCON, a
subject specifically refers to a user or human being and
considers mainly consumer subject. In our view, consumer
subjects must possess a unique attribute that transcends all
security domains. This is especially important in ecommerce
sector. The use of attributes such as username, passwords,
emails and the provision of answers to certain system-
generated questions by users or subjects, are easily transferred,
and most of the time not trustworthy and must be avoided in
order to ensure security of resources or digital information. For
example, a subject can have more than one username, email,
and in terms of providing answer to system-generated
questions, might not be who he or she claims to be.
Additionally UCON system must specify policies that state the
duration of access by every subject. For instance, a year of
access can be granted to a user based on the particular type of
resource or object. Thus, a policy can specify the life span for
an object or resource to reside in the UCON system as well as
the duration of access permitted to users; a particular resource
would reside or be available in the system for a stipulated time.
For instance, with regards to sensitive resources such as bank
statements and medical reports, a policy can be specified that
allow owners of these resources a maximum of three times
access for one year availability of resource in the system, after
which access is denied. After the stipulated life span of the
resource has expired, the system is expected to deny all
attempts to access a resource and also eliminate it from the
system. With this, subjects would have three times authorized
access to such resources within year. Additionally constraints
can be specified using factors such as obligation and condition
to enforce security. According [3], [4] time authorization is
given by:

tuple (pt, s, o, priv, pn, g), where pt ∈ N; s, g ∈S; o ∈ O; priv ∈P;

pn ∈{}; tuple (pt, s, o, priv, pn, g) states that users have been

authorized (if pn = ‘+’) or denied (if pn = ‘-’) for ‘pt’ times
‘privilege (priv)’ on object o by user g.

For instance, tuple (6, Tom, Sun, read, +, Sam) denotes that
Sam authorizes 6 times privilege read on the book Sun to Tom.
To express the idea of assigning life span to objects, which
automatically affects the right of access to such an object, we
modified the time authorization formula as:

(D, S, type (o), T (right), pn, UCONs)

where D is a natural number representing the duration of access
which can be in days, weeks, months or years. S represent
subject, type(o) represent the type of object such as sensitive,
intellectual and non-sensitive objects, T(right) represent the
number of Times a right can be executed, pn represent +, - and
in this case stands for permitaccess or denyaccess after a
subject has executed the tryaccess action and UCONs represent
the UCON system. Based on our modification, our previous
time authorization example can be rewritten as; (6M, Tom,
Sensitive Object, 2Read, +, UCONs). What this simply implies
is the UCON system authorizes the reading of a sensitive object
by the subject Tom, twice a month for 6 months. It also
communicates to the subject the availability of such an object in
the UCON system and hence the lifespan of his or her access
right.

Hypothesis:

A time authorization is given by a six tuple as:

(pt, s, o, priv, pn, g), where pt ∈ N; s, g ∈ S; o ∈ O; priv ∈ P; pn ∈ {}.

tuple (pt, s, o, priv, pn, g), specify that a user has been
authorized (if pn = ‘+’) or denied (if pn = ‘-’) for pt times priv
on object o by user g.

We modify this formula to capture the life span of object or
resource as;

(D, S, type (o), T(right), pn, UCONs),

where D is a number, type (o) represents the type of object, T
(right) represents the number of times a right can be executed,
pn = {} where after tryaccess action, + is permitaccess, and – is
denyaccess, UCONs is the UCON system.

B. Object and Object Attributes

Objects are entities that subjects have rights on. Thus
subjects can access or use objects when granted the permission
to do so. Objects must therefore be classified and stored
appropriately in a digital container based on their type. For
instance sensitive object or resource must be stored in a
container different from non-sensitive and intellectual
resources. This would ensure the ease with which life span is
assigned to particular group of resource and also monitor access
to such resource by users in a particular container. In [5] a
formal mode is proposed that specifies how to create and
destroy objects, subjects and their attributes in a UCON system
by considering a serialized usage processes. The formal model
however focuses on pre-authorization and pre- obligation with
post-update. Thus the model does not focus on ongoing usage
scenarios but considers only the overall effect induced by a

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:3, 2014

532International Scholarly and Scientific Research & Innovation 8(3) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

3,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

50
.p

df

sequence of non-interfering usage processes in creating or
destroying new subjects or objects and updating attributes after
wards. The usage control policy in their model consists of two
parts - a condition and body:

policy_name(s, o); (condition): p1, p2, …, pn → permit(s, o, r);

(body): act1, act2,… actk

The condition part contains access rules. The access rules are

represented as a conjunction of authorization, obligation and
condition predicates. If the conjunction is true, the access rule
grants a certain access right to a subject. The second part of the
policy, body, is a sequence of primitive actions. If the
conditional part of the usage control policy is satisfied, the
UCON protection system enforces the second part and moves
the system to the new state executing a sequence of primitive
actions. Not only is this formal model deficient due to its
inability to consider ongoing usage processes, it fails to state
under what circumstances objects or subjects must be created
and how long created objects must be contained in a digital
container before they are destroyed. From our point of view,
object, should be created by object provider or the subject who
owns this object. The destruction of these objects however can
be done by the UCON system or resource provider in
accordance with specified policies of the UCON system. Thus
the creation or destruction of resources and their attributes must
conform to policies that pertain to the UCON system and also to
an organization. As previously stated, sensitive object and as
such all other types of objects or resources created by a resource
provider or resource owner, need to be assigned a life span by
which it must be contained in a digital container within the
UCON system. When the life span is due, the system must
automatically destroy the object and deny access to all users. In
other words, different containers are expected to have different
life span since their contents inherently differ as illustrated in
Fig. 2. Agreeably, a container with sensitive resources or
objects such as bank statements, medical report would
undeniably have a short life span; to guarantee security and
privacy. On the other, most intellectual resources such as
eBooks, music, movies are in themselves renewable. For
instance an eBook tag as first edition unquestionably cannot be
stored in the same container with its second or latest edition.
The same applies to current as well as old movies and music. A
digital container with these type of resources ought to be
indisputably assigned a specific life span such that, old versions
of resources are eliminated from the container by the system
and new ones created appropriately by resource or service
provider. By assigning life span to digital containers, old
resources can be easily eliminated and new ones created when
the life span is due or expires. Also the right of access to
resources contained in these digital containers by users would
have to be eliminated and new right of access created for new
resources. The enforcement of this would help enhance the
performance of the UCON system and also prevent rights and
resources from abuse.

C. Rights

Rights in UCON are the same as access rights and
permission in traditional access control [6]. In UCON, rights
imply usage permissions which a subject can utilize on objects.
Furthermore the existence of a particular right is not
predefined, but rather determined when an access is attempted
by a subject depending on the subject, object and
environmental attributes, as well as authorization, obligation
and condition. Thus rights exist only when there is an object or
resource in a system and an attempt is made by a subject to
access this object or resource. Rights are permitted when access
constraints are satisfied and denied otherwise. For instance in
the process of usage if updates occur and these updates do not
conform to policies of access, the granted right is revoked by
the system.

D. Authorization

Authorization is functional predicate over attributes of
subject and object that must be satisfied in order to grant access
to a particular resource. In UCON model, this authorization
predicate can be evaluated before or during access. For
example a policy might specify that a subject must be 18 years
to access an object or resource. Thus authorization is stated
considering just the subject and object attribute without
considering the system in general [7]. From our point of view,
the state of the system is very significant where the life span of
resources is considered. The system must also be able to
determine when to grant access to subject. For instance, the
system might be functioning alright; however the object or
resource that a subject wants to access might have expired or
the subject right of access has reached its limit. In which case, a
subject needs not try access since the system would
automatically deny access.

E. Obligation

The UCON system mainly deals with the fulfillment of
obligation before, during or after the usage processes.
Obligation in UCON is a tuple of OBL = (OBS, OBO, OBA,
WHEN, DURATION) during the time of access; where OBL is
the obligation element, OBS and OBO are the obligation
subject and obligation object respectively, OBA is the
obligation action, WHEN represent |pre |on |post obligation
action that must be performed and Duration is the time frame
within which obligation has to be fulfilled [8], [9]. UCON
system does not consider obligations that have to be fulfilled
after object or resource have been rightfully accessed. In our
previous paper we looked at the concept of enforcing usage
control on a remote client server and proposed ways by which
post obligations can be fulfilled. Obligations as decision factor
will be of no importance without a consideration of the type of
object or resource. For instance obligations that pertain to
sensitive objects would require different mechanism to enforce
and monitor their fulfillment than obligations that pertain to
non sensitive resources.

F. Conditions

Conditions are environmental constrains that are taken into
account in the usage decision process. Conditions are not

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:3, 2014

533International Scholarly and Scientific Research & Innovation 8(3) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

3,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

50
.p

df

directly related to subjects and objects, but are based on
environmental attributes. The appraisal of condition predicates
can be done before granting the access to a digital object
(pre-conditions) and/or when a subject is accessing an object
(on-conditions). Conditions checks however has no influence
on subject, object or environmental attributes. Nonetheless, the
value of the conditional status can be changed inherently as the
result of environment modifications [10], [11].

IV. STORAGE AND ACCESS TO OBJECTS IN DIGITAL

CONTAINER

Digital containers are cryptographic carriers of digital
information that utilizes encryption, digital signature and
digital certificate to achieve confidentiality and integrity. This
mechanism is used by UCON to prevent unauthorized access to
protected digital content. Based on this, these containers can
also be assigned life span. When the life span assigned to a
digital container expires, the system must block and prevent the
(tryaccess) action by a subject, and thus deny access
automatically.

Fig. 2 Access to an object in a digital container

In Fig. 2, after the tryaccess action, the subject is permitted
access by selecting the type of object and the type of access.
This is then followed by the necessary pre and ongoing actions
that have to be performed by the subject or system. Thus access
to an object in a digital container depends on the life span of the
object in the digital container as well as the number of access by
a subject. For an example, let consider an instance where the
life span of a resource in digital container is one year and the
number of access by a subject is three times. In the above
instance, once the system permits access to a subject, the
information pertaining to the use of such object is made
available to the subject; life span of object and the number of
times a subject is allowed to access a particular object. In this
case using our hypothesis we can deduce:

Access = (D, S, type (o), T(right), pn, UCONs)

V. RELATED WORK

Resource management has always been the central focus of
concern in the concurrent programming [12]. This is because
most often than not, a number of processes share access to
system resources for example; memory, processor time or
network bandwidth. The correct usage and management of
resource is of great significance for the overall performance of
computational systems [13]. References [14] and [15] looked at
the problem of resource control in their work on concurrent
programming. Their work emphasized the importance of
resource separation as a means of controlling complexity of
process interactions and reducing the possibility of dependent
errors and also the use of synchronization mechanisms to
provide protection from inconsistent usage. A number of
approaches to reasoning about imperative concurrent programs
have been proposed. However, it is the ideas in an early paper
by [16] on concurrency; “Towards a Theory of Parallel
Programming (TTPP) that fit well with the view point of
separation.

The approach by [16] centered on a concept of “spatial
separation”; a way to think about concurrent processes as well
as to simplify reasoning. Hoare described formal proof rules for
shared-variables concurrency that was modular based on
compiler-enforceable syntactic constraints for ensuring
separation. Due to the modularity, one could reason locally
about a process, because simple syntactic checks ensured that
no other process could tamper with its state in a way that
invalidated the local reasoning.

In their work [17], inserted the separating conjunction in
appropriate places in the TTPP proof rules; thus the extension
of the rules studied by [18]. This insertion resulted in two
surprises in the proof rules: one positive and another negative.
The negative surprise was a counterexample as a result of [19]
John Reynolds, who showed that the rules were unsound when
used without restriction. The difficulties in showing the
soundness delayed the publication of proof rules. Nonetheless
after the counterexamples were detected, [20], [21] resolved a
similar issue in sequential programming language by requiring
certain assertion in the proof to be “precise”; these assertions
are those that unambiguously picked out an area of storage.

The positive surprise on the other hand was that they could
handle a number of daring and also valuable programming
idioms, which as a result opened up a number of unexpected
possibilities. According to [22], the idioms involved the
transfer of ownership of or right of access to a piece of state
from one process to another, which is a common behavior in the
system programs, where limited resources are shared among a
collection of competing or cooperating processes. The least
expected result however was that, their method turned out not
to be dependent essentially on having structured notations
encapsulating high level uses of synchronization constructs;
because they were able to reason in modular way about some
semaphore idioms. Consequently they used what they termed
as resource reading of semaphores; where a semaphore is
(logically) attached to a piece of state and where pieces of state

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:3, 2014

534International Scholarly and Scientific Research & Innovation 8(3) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

3,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

50
.p

df

flow dynamically between the semaphores and surrounding
code when P and V operations are performed. According to
[23] the ability to deal with ownership transfer is as a result of
using a logical connective and separation conjunction to
describe a resource partition that change over time.

A program is said to be racy if two concurrent processes
attempt to access the some portion of state at the same time:
definition 4. This statement is dependent not only on the
ordering of potential interleavings but also on the level of
granularity of the operation. Thus the avoidance of race is very
crucial when processes compete for system resource when
resources are to be used to ensure consistency. Races can also
lead to irreproducible program behavior, which makes testing
difficult. In other words race-freedom frees avoids thinking
about tiny details of interleaving or granularity of sequential
programming constructs. Sequentially equivalent programs that
can be distinguished by concurrency are:

X: = X+1, X: X+1 and X: = X+2

The only way to identify their inequivalence is through

interference from another process by racing. Though it is not
impossible in principle to describe the minute details of
interleavings, nonetheless the aim of every program design is to
ensure the avoidance of thinking about such minute details,
which is basically the point of Dijkstra’s criterion of speed
independence in his work; principles for concurrent program
design. In monitor-based concurrency, each monitor
determines a mutual exclusions group, consisting of all cells the
monitor produces. In other words when programming with
semaphores each semaphores s of condition critical regions
with B do C with common resource name r forms a mutual
exclusion group. Our work uses the ideas of [13] and [16] of
speed independence because UCON is a comprehensive model,
consisting of 16 core models with usage decision continuity and
mutability of attributes. In other words attribute change while
in the process of access and this also results in update actions.
In TTPP proof rules, the simplicity and modularity is achieved
by syntactic a restriction, which ensures caution. We use two
controlling agents to ensure caution and achieve consistency. In
contract, [24] analyze an interplay between an interleaving
semantics based on traces of actions and a “local enabling”
relation that “executes” a trace in a portion of state by a process.
We introduce our model in Section V A.

VI. CONCURRENCY IN UCON

Concurrency is the study of how multiple, independently
controlled threads behave when running together and
interacting with each other. It has been at the center of
development in the computing industry since its inception, and
continues to this day. Why is concurrency so important? The
answer is simple: in the real world, there's a whole lot going on,
and it's all happening concurrently. To build a computer
application that effectively deals with concurrency in the real
world, one must go to extraordinary lengths to avoid destroying
the concurrency required to manage it all and hence ensure
ACID in a particular system. Various concurrency control

techniques and methods have been proposed to help achieve
this. These include optimistic, pessimistic and semi-optimistic.
The objective of concurrency systems is to execute multiple
threads that share common resource without reducing the
system performance or efficiency and at the same time prevent
deadlocks [25], [26]. For a long time in the history of
computers, locks have been deployed as the best solution for
concurrency. We propose a model for concurrency in usage
control systems. This is because the original concept of UCON
expresses a single usage scenario. In other words, it does not
express interactions that occur during concurrent usage
sessions. We exemplify a concurrent usage scenario using
UCONA. Usage control authorization decision is defined by the
value of subject and objects attributes. There are also three
types of actions that can influence usage decisions as a result of
attribute mutability: preupdate, onupdate and postupdate. These
actions can either be performed by the system or subject before
access, during or after access; leading to changes in system
states [27], [28].

Using the UCON transition states in Figs. 3 (a) and (b), we
identify a bone of contention or a racy condition in states S1 and
S3 respectively after access has been granted. Therefore S1 and
S3 are regarded as the critical sections of our system. To
achieve ACID in each state, our model introduces two different
decision control agent; Pre- Decision Control (PDC) and
On-Decision Control (ODC) respectively. These control agents
are responsible for providing a race free process during
concurrent usage sessions and to promote ACID in each state of
the system. We illustrate how the proposed model works by
considering two processes N1 and N2 where N1 and N2 are two
distinct processes by two subjects trying to use the iTunes
system with UCON preA policy.

Fig. 3 (a) Transition states of UCON

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:3, 2014

535International Scholarly and Scientific Research & Innovation 8(3) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

3,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

50
.p

df

Fig. 3 (b) State transition graph of UCON system

Using the transition states in Fig. 3 (a) and the state transition
graph in Fig. 3 (b), the models in Figs. 4 (b) and (c) are
implemented for concurrent usage session.

Fig. 4 (a) Model for mutual exclusion

Fig. 4 (b) Usage Control Concurrency Model

Fig. 4 (c) Usage Control Concurrency Model with permit access

The objective of the proposed model is to help ensure safety,
non- blocking, and liveness when two processes are interacting
at the same time. In Fig. 4 (b) once access is granted, a signal is
sent to the PDC agent informing it of the type of resource or
object, the type of access and the type of update; pre or
on-going update. We illustrate this with the iTunes system.
When processes N1 and N2 are both permitted access, both of
them proceed without any lock or one process waiting for the
other to exit the critical section. This is possible because the
PDC sends a signal to the critical section. Based on the
information sent, the pre decision state (critical section)
performs the necessary preupdates required on copies of the
original object with a time stamp.

Using the iTunes system as a case study, both N1 and N2 are
allowed into the critical section without locking each other.
Thus the original object remains in the system without any
updates. The timestamp is deployed in order to eliminate
updated objects with the longest time from the system. When an
on-going authorization is required while accessing platform
authorization, both processes; N1 and N2 move to the onupdate
state (critical section), information is exchanged between the
onupdate state and ODC agent for the necessary update to be
enforced. Otherwise access is revoked and a postupdate
performed. With iTunes system, since N1 and N2 would like to
authorize a platform, an imitate version of the platform is made
available to both using perspective attributes. The
implementation of a time stamp is to enable the destruction or
elimination of outdated copied resources from the system.

The algorithm for a concurrent usage is formulated as
follows:

Definition 1: We classify UCON as a state transition system.
A Transition system is given by a tuple

(, , ,)T S Act AP L  , where, S is a finite or infinite set of

states (state space), Act is a set of actions, S Act S   is

a transition relation
1(,)s s  is denoted by 1s s ,

I S is a set of initial state or initial conditions, AP is a set of

atomic propositions, : 2APL S  is a labeling function

Definition 2: For s S and Act  , s is the set of α, the

successor S is defined as Post(s, α) = 1 1:s S s s  and

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:3, 2014

536International Scholarly and Scientific Research & Innovation 8(3) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

3,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

50
.p

df

the set of successors of s is defined as,

() (,)ActPost s Post s 

Definition 3: From definition 1, UCONA is defined as

(, ,)A AM S P A , where S is a set of sequence of states, PA is

a finite set of authorization predicates and AA is a finite set of
update actions.

Definition 4: A program is defined as racy if two concurrent
processes attempt to access the same portion of state at the same
time. An example of a racy program is represented as:

x := y + x and x := z +x, where y z

Case Study

We use iTunes System to illustrate concurrency and discuss
our model. ITunes is a media play as well as a media library
application that has been developed by Apple Inc. It is basically
utilize by users to play, download and organize digital audio
and video on personal computers that run the OS X operating
system and iOS-based devices such as iPod, iPhone,
and iPad devices. Users are able to purchase and download
music, music videos, television shows, iPod games, audio
books, podcasts, movies and ringtones, available on the iPhone
and iPod via the iTunes Store. We identify the following
objects in an iTunes system: shown in Table I. We consider a
music file as a resource and represent music file with r in our
definitions.

TABLE I

ATTRIBUTES IN UCON FOR ITUNES SYSTEM
Objects Attributes Value

User Registered,
Credit, orderList,

platformList

A Boolean value, A numerical value,
A set of resource (music) that a user has
ordered,
A platform that user authorizes to play
music

iTunes
server

regUsers Users with iTunes account

Platform authoriziedBy
localList

A user authorizes a platform
Consist of music files stored locally in a
 Platform

Music file Owner, price The user that owns the file, Price

Definition of Terms

Let the user be represented by U, resource by r, Update
Attribute by UAT, Platform by p, Threshold by  , Authorize

platform by APT, Permit Access by  , Null = , the binary digit

1 = True state, let the symbol  denotes registration, credit be

c,v be value of the resource, Ordered Item be  , PL = Platform
List, de-authorization platform be DAPT, Usage =G

Algorithm to Access a Resource:

Order (U, r)

i. (. 1) (. .) (.) (, ,)U Uc rv r U U r        

ii.
1: . { }ATU U r 

iii.
1: .ATU r U U

iv.
1: . . .ATU U c U c r v 

To utilize the resource the user has to authorize a platform.
On the other hand, a user can also de-authorize the platform.

Algorithm to authorize a platform

v.
(:)PTA U p

:

vi.
(. 1) (\ . \) (.) (, ,)L L PTU UP p UP U p A       

vii.
1: . . { }AT L LU U P U P p 

viii.
1: .AT PTU p A U

Algorithm for de-authorization

ix.
: (,)APTD U p

:

x.
(. 1) (.) (, ,)L APTU p U P U p D    

xi.
1: . . { }AT L LU U P U P p 

xii.
1: .AT PTU p A 

Finally the condition to have a resource is formulated as:

If G (p,r)
then

(.) (.) (. .) (, ,)APT PTpA rU pA rU p r G       

 end

VII. CONCLUSION

UCON provides a solution to the control of digital resources
or objects in our computing world currently. To enhance on
UCON and to accomplish its objectives in a heterogeneous
environment, this paper has come out with a model by which
some of the attributes and components of UCON can be created
and eliminated by means of lifespan. The paper further
proposed a model for the concurrent usage scenarios of UCON
system. Our model gives concurrent users access to the same
resource in a system without one user having to wait on the
other. This is achieved by the implementation of two control
agents. However due to space, we explained our model with
eight core models of usage control authorization (UCONA)

REFERENCES
[1] Alnemr R, Koenig S, Eymann T, Meinel C, (2010). Enabling usage

control through reputation objects: A discussion on e-commerce and the
Internet of services environments. Journal of theoretical and applied
electronic commerce research 5(2): 59-76.

[2] Lazouski A, Martinelli F, Mori P, (2010). Usage control in computer
security: A survey. Computer Science Review, 4(2): 81-99.

[3] Basin D, Harvan M, Klaedtke F, Zalinescu E, (2011). Monitoring
usage-control policiesin distributed systems. In: IEEE Eighteenth
International Symposium on Temporal Representation and Reasoning
(TIME), p. 88-95.

[4] Zhao B, Sandhu R, Zhang X, Qin X, (2007). Towards a times-based usage
control model. In: Data and Applications Security XXI, Springer Berlin
Heidelberg. p. 227-242.

[5] Maler, E, (2010). Controlling Data Usage with User-Managed Access
(UMA). In: W3C Privacy and Data Usage Control Workshop, Cambridge

[6] Sastry M, Krishnan R, (2007), A new modeling paradigm for dynamic
authorization in multi-domain systems. In: Computer Network
Security; Springer Berlin Heidelberg, p. 153-158.

[7] Katt B, Zhang X, Breu R, Hafner M, Seifert JP, (2008). A general
obligation model and continuity: enhanced policy enforcement engine for

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:3, 2014

537International Scholarly and Scientific Research & Innovation 8(3) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

3,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

50
.p

df

usage control. In: Proceedings of the 13th ACM symposium on Access
control models and technologies; New York, NY, USA: ACM; 2008. p.
123-132.

[8] Basin D., Harvan M., Klaedtke F and Zălinescu E, (2012). MONPOLY:
Monitoring usage-control policies. In: Runtime Verification, Springer
Berlin Heidelberg, 360-364.

[9] Wu J, Shimamoto S, (2010). Usage control based security access scheme
for wireless sensor networks. In: 2010 IEEE International Conference
on Communications (ICC), p. 1-5.

[10] Zhang X, (2006). Formal model and analysis of usage control. Ph.D.
Thesis, George Mason University, Fairfax, VA, USA.

[11] Boyapati C., Lee R., and Rinard M, (2002). Ownership types for safe
programming: Preventing data races and deadlocks. OOPSLA.

[12] Boyland J, (2003). Checking interference with fractional permissions. In
R. Cousot, editor, Static Analysis: 10th International Symposium, volume
2694 of Lecture Notes in Computer Science, pages 55–72, Berlin,
Heidelberg, New York, Springer.

[13] Dijkstra E. W, (1971) Hierarchical ordering of sequential processes. Acta
Informatica, 1 2:115–138

[14] Dijkstra E. W, (1968) Cooperating sequential processes. In F. Genuys,
editor, Programming Languages, pages 43–112. Academic Press.

[15] Hansen P. B; 1972; Structured multiprogramming. Comm. ACM, 15(7):
574–578

[16] Hoare C. A. R, (1972) Towards a theory of parallel programming. In
Hoare and Perrot, editors, Operating Systems Techniques. Academic.

[17] O’Hearn P. W. and Pym D. J (1999) The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2): 215–244.

[18] Owicki S. and Gries D, (1976). Verifying properties of parallel programs:
An axiomatic approach. Comm. ACM, 19(5): 279–285, 1976.

[19] Andrews G (1991); Concurrent programming: principles and practice.
Benjamin/Cummings

[20] Reynolds, J. C. (2005). Toward a grainless semantics for shared-variable
concurrency. In FSTTCS 2004: Foundations of Software Technology and
Theoretical Computer Science (pp. 35-48). Springer Berlin Heidelberg

[21] Gotsman A.,Yang, H, (2011). Liveness-preserving atomicity abstraction.
InAutomata, Languages and Programming (pp. 453-465). Springer Berlin
Heidelberg.

[22] Chen, J. K., Huang, Y. F., Chin, Y. H, (1997). A study of concurrent
operations on R-trees. Information Sciences, 98(1), 263-300.

[23] O’Hearn P.W, (2007). Resources, concurrency, and local reasoning.
Theoretical computer science, 375(1): 271-307.

[24] Brookes S. D, (2005). A semantics for concurrent separation logic.
Theoretical Computer Science, this Volume. Preliminary version
appeared in Proceedings of the 15th CONCUR (2004), LNCS 3170,
pp16-34.

[25] Sen K, (2008). Race directed random testing of concurrent programs. In:
ACM SIGPLAN Notices 43(6): 11-21.

[26] Lu S, Tucek J, Qin F, Zhou Y, (2006). AVIO: detecting atomicity
violations via access interleaving invariants. In: ACM SIGARCH
Computer Architecture News, p. 37-48.

[27] Rajkumar P.V, Ghosh S.K, Dasgupta P, (2009). Application specific
usage control implementation verification. International Journal of
Network Security and Its Applications, 1(3):116-128.

[28] Rajkumar P.V, Ghosh S.K, Dasgupta P, (2010). Concurrent Usage
Control Implementation Verification Using the SPIN Model Checke

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:8, No:3, 2014

538International Scholarly and Scientific Research & Innovation 8(3) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

3,
 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

50
.p

df

