Search results for: shallow wake flow
2363 A Vortex Plate Theory of Hovering Animal Flight
Authors: Khaled. M. Faqih
Abstract:
A model of vortex wake is suggested to determine the induced power during animal hovering flight. The wake is modeled by a series of equi-spaced rigid rectangular vortex plates, positioned horizontally and moving vertically downwards with identical speeds; each plate is generated during powering of the functionally wing stroke. The vortex representation of the wake considered in the current theory allows a considerable loss of momentum to occur. The current approach accords well with the nature of the wingbeat since it considers the unsteadiness in the wake as an important fluid dynamical characteristic. Induced power in hovering is calculated as the aerodynamic power required to generate the vortex wake system. Specific mean induced power to mean wing tip velocity ratio is determined by solely the normal spacing parameter (f) for a given wing stroke amplitude. The current theory gives much higher specific induced power estimate than anticipated by classical methods.Keywords: vortex theory, hovering flight, induced power, Prandlt's tip theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17472362 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements
Authors: Alexander Buhr, Klaus Ehrenfried
Abstract:
Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.Keywords: Boundary layer, high-speed PIV, ICE3, moving train model, roughness elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15282361 Effect of Reynolds Number on Flow past a Square Cylinder in Presence of Upstream and Downstream Flat Plate at Small Gap Spacing
Authors: Shams-ul-Islam, Raheela Manzoor, Zhou Chao Ying
Abstract:
A two-dimensional numerical study for flow past a square cylinder in presence of flat plate both at upstream and downstream position is carried out using the single-relaxation-time lattice Boltzmann method for gap spacing 0.5 and 1. We select Reynolds numbers from 80 to 200. The wake structure mechanism within gap spacing and near wake region, vortex structures around and behind the main square cylinder in presence of flat plate are studied and compared with flow pattern around a single square cylinder. The results are obtained in form of vorticity contour, streamlines, power spectra analysis, time trace analysis of drag and lift coefficients. Four different types of flow patterns were observed in both configurations, named as (i) Quasi steady flow (QSF), (ii) steady flow (SF), (iii) shear layer reattachment (SLR), (iv) single bluff body (SBB). It is observed that upstream flat plate plays a vital role in significant drag reduction. On the other hand, rate of suppression of vortex shedding is high for downstream flat plate case at low Reynolds numbers. The reduction in mean drag force and root mean square value of drag force for upstream flat plate case are89.1% and 86.3% at (Re, g) = (80, 0.5d) and (120, 1d) and reduction for downstream flat plate case for mean drag force and root mean square value of drag force are 11.10% and 97.6% obtained at (180, 1d) and (180, 0.5d).Keywords: Detached flat plates, drag and lift coefficients, Reynolds numbers, square cylinder, Strouhal number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21792360 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers
Authors: Irina Eglite, Andrei A. Kolyshkin
Abstract:
Method of multiple scales is used in the paper in order to derive an amplitude evolution equation for the most unstable mode from two-dimensional shallow water equations under the rigid-lid assumption. It is assumed that shallow mixing layer is slightly curved in the longitudinal direction and contains small particles. Dynamic interaction between carrier fluid and particles is neglected. It is shown that the evolution equation is the complex Ginzburg-Landau equation. Explicit formulas for the computation of the coefficients of the equation are obtained.Keywords: Shallow water equations, mixing layer, weakly nonlinear analysis, Ginzburg-Landau equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14192359 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation
Authors: Abhisek Sarkar, Abhimanyu Gaur
Abstract:
In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.
Keywords: Attractor, Bifurcation, Energy cascade, Energy spectra, Intermittence, Vortex stretching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18612358 Using the V-Sphere Code for the Passive Scalar in the Wake of a Bluff Body
Authors: Y. Obikane, T. Nemoto , K. Ogura, M. Iwata, K. Ono
Abstract:
The objective of this research was to find the diffusion properties of vehicles on the road by using the V-Sphere Code. The diffusion coefficient and the size of the height of the wake were estimated with the LES option and the third order MUSCL scheme. We evaluated the code with the changes in the moments of Reynolds Stress along the mean streamline. The results show that at the leading part of a bluff body the LES has some advantages over the RNS since the changes in the strain rates are larger for the leading part. We estimated that the diffusion coefficient with the computed Reynolds stress (non-dimensional) was about 0.96 times the mean velocity.
Keywords: Wake , bluff body, V-CAD, turbulence diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14542357 Statistical Description in the Turbulent Near Wake of a Rotating Circular Cylinder
Authors: Sharul S. Dol, U. Azimov, Robert J. Martinuzzi
Abstract:
Turbulence studies were made in the wake of a rotating circular cylinder in a uniform free stream. The interest was to examine the turbulence properties at the suppression of periodicity in vortex formation process. An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 9000 for velocity ratios, λ between 0 and 2.7. Hot-wire anemometry and particle image velocimetry results indicate that the rotation of the cylinder causes significant changes in the vortical activities. The turbulence quantities are getting smaller as λ increases due to suppression of coherent vortex structures.Keywords: Rotating circular cylinder, Reynolds stress, vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852356 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method
Authors: Anjali Verma, Ram Jiwari, Jitender Kumar
Abstract:
This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.
Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18392355 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code
Authors: Kadda Boumediene, Mohamed Bouzit
Abstract:
The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.
Keywords: Seiun Maru propeller, steady, unsteady, CFD, HSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8402354 Simulation of Sloshing-Shear Mixed Shallow Water Waves (II) Numerical Solutions
Authors: Weihao Chung, Iau-Teh Wang, Yu-Hsi Hu
Abstract:
This is the second part of the paper. It, aside from the core subroutine test reported previously, focuses on the simulation of turbulence governed by the full STF Navier-Stokes equations on a large scale. Law of the wall is found plausible in this study as a model of the boundary layer dynamics. Model validations proceed to include velocity profiles of a stationary turbulent Couette flow, pure sloshing flow simulations, and the identification of water-surface inclination due to fluid accelerations. Errors resulting from the irrotational and hydrostatic assumptions are explored when studying a wind-driven water circulation with no shakings. Illustrative examples show that this numerical strategy works for the simulation of sloshing-shear mixed flow in a 3-D rigid rectangular base tank.Keywords: potential flow theory, sloshing flow, space-timefiltering, order of accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922353 Topology of Reverse Von-Kármán Vortex Street in the Wake of a Swimming Whale Shark
Authors: Arash Taheri
Abstract:
In this paper, effects of the ventral body planform of a swimming whale shark on the formation of ‘reverse von-Kármán vortex street’ behind the aquatic animal are studied using Fluid-Structure Interaction (FSI) approach. In this regard, incompressible Navier-Stokes equations around the whale shark’s body with a prescribed deflection dynamics are solved with the aid of Boundary Data Immersion Method (BDIM) and Implicit Large Eddy Simulation (ILES) turbulence treatment by WaterLily.jl solver; fully-written in Julia programming language. The whale shark flow simulations here are performed at high Reynolds number, i.e. 1.4 107 corresponding to the swimming of a 10 meter-whale shark at an average speed of 5 km/h. For comparison purposes, vortical flow generation behind a silky shark with a streamlined forehead eidonomy is also simulated at high Reynolds number, Re = 2 106, corresponding to the swimming of a 2 meter-silky shark at an average speed of 3.6 km/h. The results depict formation of distinct wake topologies behind the swimming sharks depending on the travelling wave oscillating amplitudes.
Keywords: Whale shark, vortex street, BDIM, FSI, functional eidonomy, bionics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12782352 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces
Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid
Abstract:
We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.Keywords: Run-up waves, Shallow water equations, finite volume method, wet/dry interface, dam-break problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7092351 Conjunctive Surface Runoff and Groundwater Management in Salinity Soils
Authors: S. Chuenchooklin, T. Ichikawa, P. Mekpruksawong
Abstract:
This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.Keywords: Surface water, groundwater observation, irrigation, water balance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342350 The Comparison of Form Drag and Profile Dragof a Wind Turbine Blade Section in Pitching Oscillation
Authors: M. R. Soltani, M. Seddighi, M. Mahmoudi
Abstract:
Extensive wind tunnel tests have been conducted to investigate the unsteady flow field over and behind a 2D model of a 660 kW wind turbine blade section in pitching motion. The surface pressure and wake dynamic pressure variation at a distance of 1.5 chord length from trailing edge were measured by pressure transducers during several oscillating cycles at 3 reduced frequencies and oscillating amplitudes. Moreover, form drag and linear momentum deficit are extracted and compared at various conditions. The results show that the wake velocity field and surface pressure of the model have similar behavior before and after the airfoil beyond the static stall angle of attack. In addition, the effects of reduced frequency and oscillation amplitudes are discussed.Keywords: Pitching motion, form drag, Profile drag, windturbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19882349 Effects of Synthetic Jet in Suppressing Cavity Oscillations
Abstract:
The three-dimensional incompressible flow past a rectangular open cavity is investigated, where the aspect ratio of the cavity is considered as 4. The principle objective is to use large-eddy simulation to resolve and control the large-scale structures, which are largely responsible for flow oscillations in a cavity. The flow past an open cavity is very common in aerospace applications and can be a cause of acoustic source due to hydrodynamic instability of the shear layer and its interactions with the downstream edge. The unsteady Navier-stokes equations have been solved on a staggered mesh using a symmetry-preserving central difference scheme. Synthetic jet has been used as an active control to suppress the cavity oscillations in wake mode for a Reynolds number of ReD = 3360. The effect of synthetic jet has been studied by varying the jet amplitude and frequency, which is placed at the upstream wall of the cavity. The study indicates that there exits a frequency band, which is larger than a critical value, is effective in attenuating cavity oscillations when blowing ratio is more than 1.0.Keywords: Cavity oscillation, Large Eddy Simulation, Synthetic Jet, Flow Control, Turbulence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18152348 Tsunami Modelling using the Well-Balanced Scheme
Authors: Ahmad Izani M. Ismail, Md. Fazlul Karim, Mai Duc Thanh
Abstract:
A well balanced numerical scheme based on stationary waves for shallow water flows with arbitrary topography has been introduced by Thanh et al. [18]. The scheme was constructed so that it maintains equilibrium states and tests indicate that it is stable and fast. Applying the well-balanced scheme for the one-dimensional shallow water equations, we study the early shock waves propagation towards the Phuket coast in Southern Thailand during a hypothetical tsunami. The initial tsunami wave is generated in the deep ocean with the strength that of Indonesian tsunami of 2004.Keywords: Tsunami study, shallow water, conservation law, well-balanced scheme, topography. Subject classification: 86 A 05, 86 A 17.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17462347 Comparison of Detached Eddy Simulations with Turbulence Modeling
Authors: Muhammad Amjad Sohail, Prof. Yan Chao, Mukkarum Husain
Abstract:
Flow field around hypersonic vehicles is very complex and difficult to simulate. The boundary layers are squeezed between shock layer and body surface. Resolution of boundary layer, shock wave and turbulent regions where the flow field has high values is difficult of capture. Detached eddy simulation (DES) is a modification of a RANS model in which the model switches to a subgrid scale formulation in regions fine enough for LES calculations. Regions near solid body boundaries and where the turbulent length scale is less than the maximum grid dimension are assigned the RANS mode of solution. As the turbulent length scale exceeds the grid dimension, the regions are solved using the LES mode. Therefore the grid resolution is not as demanding as pure LES, thereby considerably cutting down the cost of the computation. In this research study hypersonic flow is simulated at Mach 8 and different angle of attacks to resolve the proper boundary layers and discontinuities. The flow is also simulated in the long wake regions. Mesh is little different than RANS simulations and it is made dense near the boundary layers and in the wake regions to resolve it properly. Hypersonic blunt cone cylinder body with frustrum at angle 5o and 10 o are simulated and there aerodynamics study is performed to calculate aerodynamics characteristics of different geometries. The results and then compared with experimental as well as with some turbulence model (SA Model). The results achieved with DES simulation have very good resolution as well as have excellent agreement with experimental and available data. Unsteady simulations are performed for DES calculations by using duel time stepping method or implicit time stepping. The simulations are performed at Mach number 8 and angle of attack from 0o to 10o for all these cases. The results and resolutions for DES model found much better than SA turbulence model.Keywords: Detached eddy simulation, dual time stepping, hypersonic flow, turbulence modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23492346 Flow Control around Bluff Bodies by Attached Permeable Plates
Authors: G. M. Ozkan, H. Akilli
Abstract:
The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0o, 15o, 30o, 45o, 60o) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45oand 60o which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.
Keywords: Bluff body, flow control, permeable plate, PIV, VIV, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25832345 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously
Authors: S. Mehrab Amiri, Nasser Talebbeydokhti
Abstract:
Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme. In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.
Keywords: Artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8832344 Phase-Averaged Analysis of Three-Dimensional Vorticity in the Wake of Two Yawed Side-By-Side Circular Cylinders
Authors: T. Zhou, S. F. Mohd. Razali, Y. Zhou, H. Wang, L. Cheng
Abstract:
Thewake flow behind two yawed side-by-sidecircular cylinders is investigated using athree-dimensional vorticity probe. Four yaw angles (α), namely, 0°, 15°, 30° and 45° and twocylinder spacing ratios T* of 1.7 and 3.0 were tested. For T* = 3.0, there exist two vortex streets and the cylinders behave as independent and isolated ones. The maximum contour value of the coherent streamwise vorticity ~* ωx is only about 10% of that of the spanwise vorticity ~* ωz . With the increase of α, ~* ωx increases whereas ~* ωz decreases. At α = 45°, ~* ωx is about 67% of ~* ωz .For T* = 1.7, only a single peak is detected in the energy spectrum. The spanwise vorticity contours have an organized pattern only at α = 0°. The maximum coherent vorticity contours of ~* ω x and ~* ωz for T* = 1.7 are about 30% and 7% of those for T* = 3.0.The independence principle (IP)in terms of Strouhal numbers is applicable in both wakes when α< 40°.
Keywords: Circular cylinder wake, vorticity, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17952343 Heat Transfer Characteristics on Blade Tip with Unsteady Wake
Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho
Abstract:
Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.
Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16772342 Numerical Evaluation of the Aerodynamic Efficiency of the Stevens and Jolly Vertical- Axis Windmill (1895)
Authors: M. Raciti Castelli, E. Benini
Abstract:
This paper presents a numerical investigation of the unsteady flow around an American 19th century vertical-axis windmill: the Stevens & Jolly rotor, patented on April 16, 1895. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (t-RANS) equations: a full campaign of numerical simulation has been performed using the k-ω SST turbulence model. Flow field characteristics have been investigated for several values of tip speed ratio and for a constant unperturbed free-stream wind velocity of 6 m/s, enabling the study of some unsteady flow phenomena in the rotor wake. Finally, the global power generated from the windmill has been determined for each simulated angular velocity, allowing the calculation of the rotor power-curve.Keywords: CFD, vertical-axis rotor, windmill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14442341 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10982340 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon
Authors: M. Salmanpour, O. Nourani Zonouz
Abstract:
In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.
Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8782339 Simulation of Fluid Flow and Heat Transfer in the Inclined Enclosure
Authors: A. Karimipour, M. Afrand, M. Akbari, M.R. Safaei
Abstract:
Mixed convection in two-dimensional shallow rectangular enclosure is considered. The top hot wall moves with constant velocity while the cold bottom wall has no motion. Simulations are performed for Richardson number ranging from Ri = 0.001 to 100 and for Reynolds number keeping fixed at Re = 408.21. Under these conditions cavity encompasses three regimes: dominating forced, mixed and free convection flow. The Prandtl number is set to 6 and the effects of cavity inclination on the flow and heat transfer are studied for different Richardson number. With increasing the inclination angle, interesting behavior of the flow and thermal fields are observed. The streamlines and isotherm plots and the variation of the Nusselt numbers on the hot wall are presented. The average Nusselt number is found to increase with cavity inclination for Ri ³ 1 . Also it is shown that the average Nusselt number changes mildly with the cavity inclination in the dominant forced convection regime but it increases considerably in the regime with dominant natural convection.
Keywords: Mixed convection, inclined driven cavity, Richardson number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18712338 Thematic Role Extraction Using Shallow Parsing
Authors: Mehrnoush Shamsfard, Maryam Sadr Mousavi
Abstract:
Extracting thematic (semantic) roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a rule-based approach to extract semantic roles from Persian sentences. The system exploits a twophase architecture to (1) identify the arguments and (2) label them for each predicate. For the first phase we developed a rule based shallow parser to chunk Persian sentences and for the second phase we developed a knowledge-based system to assign 16 selected thematic roles to the chunks. The experimental results of testing each phase are shown at the end of the paper.Keywords: Natural Language Processing, Semantic RoleLabeling, Shallow parsing, Thematic Roles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20272337 Effects of Inlet Distorted Flows on the Performance of an Axial Compressor
Authors: Asad Islam, Khalid Parvez
Abstract:
Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions.Keywords: Angle, ANSYS-CFX®, axial compressor, Bladegen®, CFD, distortions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20122336 Low-Noise Amplifier Design for Improvement of Communication Range for Wake-up Receiver Based Wireless Sensor Network Application
Authors: Ilef Ketata, Mohamed Khalil Baazaoui, Robert Fromm, Ahmad Fakhfakh, Faouzi Derbel
Abstract:
The integration of wireless communication, e.g. in realor quasi-real-time applications, is related to many challenges such as energy consumption, communication range, latency, quality of service, and reliability. The improvement of wireless sensor network performance starts by enhancing the capabilities of each sensor node. While consuming less energy, wake-up receiver (WuRx) nodes have an impact on reducing latency. The solution for sensitivity improvements of sensor nodes, and WuRx in particular, with an energy consumption expense is low-noise amplifier (LNAs) blocks placed in the RF Antenna. This paper presents a comparative study for improving communication range and decreasing the energy consumption of WuRx nodes.
Keywords: Wireless sensor network, wake-up receiver, duty-cycled, low-noise amplifier, envelope detector, range study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072335 An Unstructured Finite-volume Technique for Shallow-water Flows with Wetting and Drying Fronts
Authors: Rajendra K. Ray, Kim Dan Nguyen
Abstract:
An unstructured finite volume numerical model is presented here for simulating shallow-water flows with wetting and drying fronts. The model is based on the Green-s theorem in combination with Chorin-s projection method. A 2nd-order upwind scheme coupled with a Least Square technique is used to handle convection terms. An Wetting and drying treatment is used in the present model to ensures the total mass conservation. To test it-s capacity and reliability, the present model is used to solve the Parabolic Bowl problem. We compare our numerical solutions with the corresponding analytical and existing standard numerical results. Excellent agreements are found in all the cases.Keywords: Finite volume method, Projection method, Shallow water, Unstructured grid, wetting/drying fronts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15972334 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds
Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid
Abstract:
A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.Keywords: Dam-break flows, deformable beds, finite element method, finite volume method, linear elasticity, Shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913