Search results for: levelized cost of energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4626

Search results for: levelized cost of energy

4596 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel

Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren

Abstract:

Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.

Keywords: Flywheel energy storage, fuzzy, optimization, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
4595 Feasibility Study of Air Conditioners Operated by Solar Energy in Saudi Arabia

Authors: Eman Simbawa, Budur Alasmri, Hanan Munahir, Hanin Munahir

Abstract:

Solar energy has become currently the subject of attention around the world and is undergoing many researches and studies. Using solar energy, which is a renewable energy, is aligned with the Saudi Vision 2030. People are more aware of it and are starting to use it more for environmental and economical reasons. A questionnaire was conducted in this paper to measure the awareness of people in Saudi Arabia regarding solar energy and their attitude towards it. Then, two kinds of air conditioners (one powered by electricity only and one powered by solar panels and electricity) are compared in terms of their cost over a period of 20 years. This will help the users to decide which kind of device to use depending on its cost. The result shows that as the electricity tariffs in Saudi Arabia increases, depending on the sector, the solar air conditioner is cheaper. In fact, if the tariff in the future increases to reach 50 Halalah/kWh, the solar air conditioner is more economical. This will influence users to buy more solar powered devices, and it will decrease the consumption of electricity. Therefore, the dependence on oil will decrease.

Keywords: Air conditioner, solar energy, photovoltaic cells, present value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741
4594 Optimal DG Placement in Distribution systems Using Cost/Worth Analysis

Authors: M Ahmadigorji, A. Abbaspour, A Rajabi-Ghahnavieh, M. Fotuhi- Firuzabad

Abstract:

DG application has received increasing attention during recent years. The impact of DG on various aspects of distribution system operation, such as reliability and energy loss, depend highly on DG location in distribution feeder. Optimal DG placement is an important subject which has not been fully discussed yet. This paper presents an optimization method to determine optimal DG placement, based on a cost/worth analysis approach. This method considers technical and economical factors such as energy loss, load point reliability indices and DG costs, and particularly, portability of DG. The proposed method is applied to a test system and the impacts of different parameters such as load growth rate and load forecast uncertainty (LFU) on optimum DG location are studied.

Keywords: Distributed generation, optimal placement, cost/worthanalysis, customer interruption cost, Dynamic programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2974
4593 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation

Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou

Abstract:

This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.

Keywords: Hydropower plant, investment cost, multi-objective optimization, number of generator units.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
4592 Contribution to the Success of the Energy Audit in the Industrial Environment: A Case Study about Audit of Interior Lighting for an Industrial Site in Morocco

Authors: Abdelkarim Ait Brik, Abdelaziz Khoukh, Mustapha Jammali, Hamid Chaikhy

Abstract:

The energy audit is the essential initial step to ensure a good definition of energy control actions. The in-depth study of the various energy-consuming equipments makes it possible to determine the actions and investments with best cost for the company. The analysis focuses on the energy consumption of production equipment and utilities (lighting, heating, air conditioning, ventilation, transport). Successful implementation of this approach requires, however, to take into account a number of prerequisites. This paper proposes a number of useful recommendations concerning the energy audit in order to achieve better results, and a case study concerning the lighting audit of a Moroccan company by showing the gains that can be made through this audit.

Keywords: Energy audit, energy diagnosis, consumption, electricity, energy efficiency, lighting audit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
4591 The Security Trade-Offs in Resource Constrained Nodes for IoT Application

Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve

Abstract:

The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.

Keywords: Internet of Things, IEEE 802.15.4, security cost evaluation, wireless sensor network, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
4590 Wafer Fab Operational Cost Monitoring and Controlling with Cost per Equivalent Wafer Out

Authors: Ian Kree, Davina Chin Lee Yien

Abstract:

This paper presents Cost per Equivalent Wafer Out, which we find useful in wafer fab operational cost monitoring and controlling. It removes the loading and product mix effect in the cost variance analysis. The operation heads, therefore, could immediately focus on identifying areas for cost improvement. Without this, they would have to measure the impact of the loading variance and product mix variance between actual and budgeted prior to make any decision on cost improvement. Cost per Equivalent Wafer Out, thereby, increases efficiency in wafer fab operational cost monitoring and controlling.

Keywords: Cost Control, Cost Variance, Operational Expenditure, Semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
4589 Reliability-Based Life-Cycle Cost Model for Engineering Systems

Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski

Abstract:

The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life-cycle cost of an electric motor.

Keywords: Initial Cost, Life-cycle cost, Maintenance Cost, Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
4588 Electricity Power Planning: the Role of Wind Energy

Authors: Paula Ferreira, Madalena Araújo, M.E.J. O’Kelly

Abstract:

Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.

Keywords: Wind power, electricity planning model, cost, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
4587 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations

Authors: Siyanda S. Biyela, Willie A. Cronje

Abstract:

This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.

Keywords: Cost of energy, tool, wave energy converter, WEC-Sim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
4586 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate

Authors: Kwame B. O. Amoah

Abstract:

This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate that this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.

Keywords: Energy consumption, building energy analysis, energy retrofits, energy-efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 340
4585 Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model

Authors: Yuan-Jye Tseng, Shin-Han Lin

Abstract:

In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes.

Keywords: Supply chain management, green supply chain, green design, green manufacturing, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
4584 A Note on Significance of Solar Pond Technology for Power Generation

Authors: Donepudi Jagadish

Abstract:

In the view of current requirements of power generation and the increased interest on renewable energy sources, many options are available for generation of clean power. Solar power generation would be one of the best options in this context. The solar pond uses the principle of conversion of solar energy into heat energy, and also has the capability of storing this energy for certain period of time. The solar ponds could be best option for the regions with high solar radiation throughout the day, and also has free land availability. The paper depicts the significance of solar pond for conversion of solar energy into heat energy with a sight towards the parameters like thermal efficiency, working conditions and cost of construction. The simulation of solar pond system has been carried out for understanding the trends of the thermal efficiencies with respect to time.

Keywords: Renewable Energy, Solar Pond, Energy Efficiency, Construction of Solar Pond.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3328
4583 Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm

Authors: H. Rezvani, A. Hekmati

Abstract:

Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA. 

Keywords: Renewable Energy, Wind Diesel System, Induction Generator, Energy Storage, Imperialist Competitive Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
4582 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study

Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim

Abstract:

Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.

Keywords: Optimum energy systems, renewable energy sources, smart grid, micro-grid system, on- grid system, off-grid system, modeling and simulation, economical evaluation, net present value, cost of energy, environmental impacts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
4581 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings

Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya

Abstract:

The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.

Keywords: Energy reduction, thermal comfort, HEMS market, thermal environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
4580 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances

Authors: Sayed Amir Hamzeh Mirkheshti

Abstract:

Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.

Keywords: Wind energy project; uncertain resources; risks; Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
4579 Green-Y Model for Preliminary Sustainable Economical Concept of Renewable Energy Sources Deployment in ASEAN Countries

Authors: H. H. Goh, K. C. Goh, W. N. Z. S. Wan Sukri, Q. S. Chua, S. W. Lee, B. C. Kok

Abstract:

Endowed of renewable energy sources (RES) are the advantages of ASEAN, but they are using a low amount of RES only to generate electricity because their primary energy sources are fossil and coal. The cost of purchasing fossil and coal is cheaper now, but it might be expensive soon, as it will be depleted sooner and after. ASEAN showed that the RES are convenient to be implemented. Some country in ASEAN has huge renewable energy sources potential and use. The primary aim of this project is to assist ASEAN countries in preparing the renewable energy and to guide the policies for RES in the more upright direction. The Green-Y model will help ASEAN government to study and forecast the economic concept, including feed-in tariff.

Keywords: ASEAN RES, Renewable Energy, RES Policies, RES Potential, RES Utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
4578 Valorization of Residues from Forest Industry for the Generation of Energy

Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto

Abstract:

The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.

Keywords: Bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
4577 Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses

Authors: M. Feliciano, F. Rodrigues, A. Gonçalves, J. M. R. C. A. Santos, V. Leite

Abstract:

With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries. 

Keywords: Meat industry, energy intensity, energy efficiency, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3734
4576 Study of Energy Efficiency Opportunities in UTHM

Authors: Zamri Noranai, Mohammad Zainal Md Yusof

Abstract:

Sustainable energy usage has been recognized as one of the important measure to increase the competitiveness of the nation globally. Many strong emphases were given in the Ninth Malaysia Plan (RMK9) to improve energy efficient especially to government buildings. With this in view, a project to investigate the potential of energy saving in selected building in Universiti Tun Hussein Onn Malaysia (UTHM) was carried out. In this project, a case study involving electric energy consumption of the academic staff office building was conducted. The scope of the study include to identify energy consumption in a selected building, to study energy saving opportunities, to analyse cost investment in term of economic and to identify users attitude with respect to energy usage. The MS1525:2001, Malaysian Standard -Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. Several energy efficient measures were considered and their merits and priority were compared. Improving human behavior can reduce energy consumption by 6% while technical measure can reduce energy consumption by 44%. Two economic analysis evaluation methods were applied; they are the payback period method and net present value method.

Keywords: office building, energy, efficiency, economic analyses

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
4575 Small Wind Turbine Hybrid System for Remote Application: Egyptian Case Study

Authors: M. A. Badr, A. N. Mohib, M. M. Ibrahim

Abstract:

The objective of this research is to study the technical and economic performance of wind/diesel/battery (W/D/B) system supplying a remote small gathering of six families using HOMER software package. The electrical energy is to cater for the basic needs for which the daily load pattern is estimated. Net Present Cost (NPC) and Cost of Energy (COE) are used as economic criteria, while the  measure of performance is % of power shortage. Technical and economic parameters are defined to estimate the feasibility of the system under study. Optimum system configurations are estimated for two sites. Using HOMER software, the simulation results showed that W/D/B systems are economical for the assumed community sites as the price of generated electricity is about 0.308 $/kWh, without taking external benefits into considerations. W/D/B systems are more economical than W/B or diesel alone systems, as the COE is 0.86 $/kWh for W/B and 0.357 $/kWh for diesel alone.

Keywords: Optimum energy systems, Remote electrification, Renewable energy, Wind turbine systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
4574 Scheduled Maintenance and Downtime Cost in Aircraft Maintenance Management

Authors: Remzi Saltoglu, Nazmia Humaira, Gokhan Inalhan

Abstract:

During aircraft maintenance scheduling, operator calculates the budget of the maintenance. Usually, this calculation includes only the costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. However, in some of those, downtime cost is neglected claiming that grounding is a natural fact of maintenance; therefore, it is not considered as part of the analytical decision-making process. Based on the normalized data, we introduce downtime cost with its monetary value and add its seasonal character. We envision that the rest of the model, which works together with the downtime cost, could be checked with the real life cases, through the review of MRO cost and airline spending in the particular and scheduled maintenance events.

Keywords: Aircraft maintenance, downtime, downtime cost, maintenance cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4424
4573 Reconfiguration of Deregulated Distribution Network for Minimizing Energy Supply Cost by using Multi-Objective BGA

Authors: H. Kazemi Karegar, S. Jalilzadeh, V. Nabaei, A. Shabani

Abstract:

In this paper, the problem of finding the optimal topological configuration of a deregulated distribution network is considered. The new features of this paper are proposing a multiobjective function and its application on deregulated distribution networks for finding the optimal configuration. The multi-objective function will be defined for minimizing total Energy Supply Costs (ESC) and energy losses subject to load flow constraints. The optimal configuration will be obtained by using Binary Genetic Algorithm (BGA).The proposed method has been tested to analyze a sample and a practical distribution networks.

Keywords: Binary Genetic Algorithm, Deregulated Distribution Network, Minimizing Cost, Reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
4572 Analysis of Heat Exchanger Network of Distillation Unit of Shiraz Oil Refinery

Authors: J. Khorshidi, E. Zare, A.R. Khademi

Abstract:

The reduction of energy consumption through improvements in energy efficiency has become an important goal for all industries, in order to improve the efficiency of the economy, and to reduce the emissions of Co2 caused by power generation. The objective of this paper is to investigate opportunities to increase process energy efficiency at the distillation unit of Shiraz oil refinery in south of Iran. The main aim of the project is to locate energy savings by use of pinch technology and to assess them. At first all the required data of hot and cold streams in preheating section of distillation unit has been extracted from the available flow sheets and then pinch analysis has been conducted. The present case study is a threshold one which does not need any utilities. After running range, targeting several heat exchanger networks were designed with respect to operating conditions and different ΔTmin. The optimal value of ΔTmin was calculated to be 22.3 °C. Based on this optimal value, there will be 5% reduction in annual total cost of heat exchanger network.

Keywords: Pinch technology, heat exchanger network, operating cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
4571 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masoud Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technical and economic. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: Hybrid energy system, optimum sizing, power management, TLBO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
4570 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee

Abstract:

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
4569 The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: Global warming counter measure, energy technology, solid fuel production, biogas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
4568 Design of a Cost Effective Off-Grid Wind-Diesel Hybrid Power System in an Island of Bangladesh

Authors: Nahid-Al-Masood, Rifat Mirza, Jubaer Ahmed, Amina Hasan Abedin, S.R. Deeba, Faeza Hafiz, Mahmuda Begum, A. Hasib Chowdhury

Abstract:

Bangladesh is a developing country with large population. Demand of electrical energy is increasing day by day because of increasing population and industrialization. But due to limited resources, people here are suffering from power crisis problem which is considered as a major obstacle to the economic development. In most of the cases, it is extremely difficult to extend high tension transmission lines to some of the places that are separated from the mainland. Renewable energy is considered to be the right choice for providing clean energy to these remote settlements. This paper proposes a cost effective design of off-grid wind-diesel hybrid power system using combined heat and power (CHP) technology in a grid isolated island, Sandwip, Bangladesh. Design and simulation of the wind-diesel hybrid power system is performed considering different factors for the island Sandwip. Detailed economic analysis and comparison with solar PV system clearly reveals that wind-diesel hybrid power system can be a cost effective solution for the isolated island like Sandwip.

Keywords: renewable energy, off-grid, wind-diesel hybrid system, CHP technology, economic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
4567 Bioethanol - A Viable Answer to India-s Surging Energy Needs

Authors: Pranav Raghav Sood

Abstract:

India is currently the second most populous nation in the world with over 1.2 billion people, growing annually at the rate of 1.5%. It is experiencing a surge in energy demands, expected to grow more than three to four times in 25 years. Most of the energy requirements are currently satisfied by the import of fossil fuels – coal, petroleum-based products and natural gas. Biofuels can satisfy these energy needs in an environmentally benign and cost effective manner while reducing dependence on import of fossil fuels, thus providing National Energy Security. Among various forms of bioenergy, bioethanol is one of the major options for India because of availability of feed stock crops. This paper presents an overview on bioethanol production and technology, steps taken by the Indian government to facilitate and bring about optimal development and utilization of indigenous biomass feedstocks for production of this biofuel.

Keywords: Bioethanol, Fossil fuel, Biofuel, energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726