Search results for: image retrieval
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1722

Search results for: image retrieval

1692 Language and Retrieval Accuracy

Authors: Ahmed Abdelali, Jim Cowie, Hamdy S. Soliman

Abstract:

One of the major challenges in the Information Retrieval field is handling the massive amount of information available to Internet users. Existing ranking techniques and strategies that govern the retrieval process fall short of expected accuracy. Often relevant documents are buried deep in the list of documents returned by the search engine. In order to improve retrieval accuracy we examine the issue of language effect on the retrieval process. Then, we propose a solution for a more biased, user-centric relevance for retrieved data. The results demonstrate that using indices based on variations of the same language enhances the accuracy of search engines for individual users.

Keywords: Information Search and Retrieval, LanguageVariants, Search Engine, Retrieval Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
1691 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

Authors: H. B. Kekre, Kavita Patil

Abstract:

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
1690 Shape-Based Image Retrieval Using Shape Matrix

Authors: C. Sheng, Y. Xin

Abstract:

Retrieval image by shape similarity, given a template shape is particularly challenging, owning to the difficulty to derive a similarity measurement that closely conforms to the common perception of similarity by humans. In this paper, a new method for the representation and comparison of shapes is present which is based on the shape matrix and snake model. It is scaling, rotation, translation invariant. And it can retrieve the shape images with some missing or occluded parts. In the method, the deformation spent by the template to match the shape images and the matching degree is used to evaluate the similarity between them.

Keywords: shape representation, shape matching, shape matrix, deformation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1689 Retrieving Similar Segmented Objects Using Motion Descriptors

Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou

Abstract:

The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.

Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
1688 A Copyright Protection Scheme for Color Images using Secret Sharing and Wavelet Transform

Authors: Shang-Lin Hsieh, Lung-Yao Hsu, I-Ju Tsai

Abstract:

This paper proposes a copyright protection scheme for color images using secret sharing and wavelet transform. The scheme contains two phases: the share image generation phase and the watermark retrieval phase. In the generation phase, the proposed scheme first converts the image into the YCbCr color space and creates a special sampling plane from the color space. Next, the scheme extracts the features from the sampling plane using the discrete wavelet transform. Then, the scheme employs the features and the watermark to generate a principal share image. In the retrieval phase, an expanded watermark is first reconstructed using the features of the suspect image and the principal share image. Next, the scheme reduces the additional noise to obtain the recovered watermark, which is then verified against the original watermark to examine the copyright. The experimental results show that the proposed scheme can resist several attacks such as JPEG compression, blurring, sharpening, noise addition, and cropping. The accuracy rates are all higher than 97%.

Keywords: Color image, copyright protection, discrete wavelet transform, secret sharing, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1687 A Review on Important Aspects of Information Retrieval

Authors: Yogesh Gupta, Ashish Saini, A.K. Saxena

Abstract:

Information retrieval has become an important field of study and research under computer science due to explosive growth of information available in the form of full text, hypertext, administrative text, directory, numeric or bibliographic text. The research work is going on various aspects of information retrieval systems so as to improve its efficiency and reliability. This paper presents a comprehensive study, which discusses not only emergence and evolution of information retrieval but also includes different information retrieval models and some important aspects such as document representation, similarity measure and query expansion.

Keywords: Information Retrieval, query expansion, similarity measure, query expansion, vector space model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3341
1686 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
1685 Mining and Visual Management of XML-Based Image Collections

Authors: Khalil Shihab, Nida Al-Chalabi

Abstract:

This article describes Uruk, the virtual museum of Iraq that we developed for visual exploration and retrieval of image collections. The system largely exploits the loosely-structured hierarchy of XML documents that provides a useful representation method to store semi-structured or unstructured data, which does not easily fit into existing database. The system offers users the capability to mine and manage the XML-based image collections through a web-based Graphical User Interface (GUI). Typically, at an interactive session with the system, the user can browse a visual structural summary of the XML database in order to select interesting elements. Using this intermediate result, queries combining structure and textual references can be composed and presented to the system. After query evaluation, the full set of answers is presented in a visual and structured way.

Keywords: Data-centric XML, graphical user interfaces, information retrieval, case-based reasoning, fuzzy sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
1684 Object Identification with Color, Texture, and Object-Correlation in CBIR System

Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali

Abstract:

Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.

Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1683 Word Stemming Algorithms and Retrieval Effectiveness in Malay and Arabic Documents Retrieval Systems

Authors: Tengku Mohd T. Sembok

Abstract:

Documents retrieval in Information Retrieval Systems (IRS) is generally about understanding of information in the documents concern. The more the system able to understand the contents of documents the more effective will be the retrieval outcomes. But understanding of the contents is a very complex task. Conventional IRS apply algorithms that can only approximate the meaning of document contents through keywords approach using vector space model. Keywords may be unstemmed or stemmed. When keywords are stemmed and conflated in retrieving process, we are a step forwards in applying semantic technology in IRS. Word stemming is a process in morphological analysis under natural language processing, before syntactic and semantic analysis. We have developed algorithms for Malay and Arabic and incorporated stemming in our experimental systems in order to measure retrieval effectiveness. The results have shown that the retrieval effectiveness has increased when stemming is used in the systems.

Keywords: Information Retrieval, Natural Language Processing, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
1682 Attack Detection through Image Adaptive Self Embedding Watermarking

Authors: S. Shefali, S. M. Deshpande, S. G. Tamhankar

Abstract:

Now a days, a significant part of commercial and governmental organisations like museums, cultural organizations, libraries, commercial enterprises, etc. invest intensively in new technologies for image digitization, digital libraries, image archiving and retrieval. Hence image authorization, authentication and security has become prime need. In this paper, we present a semi-fragile watermarking scheme for color images. The method converts the host image into YIQ color space followed by application of orthogonal dual domains of DCT and DWT transforms. The DCT helps to separate relevant from irrelevant image content to generate silent image features. DWT has excellent spatial localisation to help aid in spatial tamper characterisation. Thus image adaptive watermark is generated based of image features which allows the sharp detection of microscopic changes to locate modifications in the image. Further, the scheme utilises the multipurpose watermark consisting of soft authenticator watermark and chrominance watermark. Which has been proved fragile to some predefined processing like intentinal fabrication of the image or forgery and robust to other incidental attacks caused in the communication channel.

Keywords: Cryptography, Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
1681 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image

Authors: K. Muthukannan, P. Latha

Abstract:

In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).

Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1680 Retrieval of Relevant Visual Data in Selected Machine Vision Tasks: Examples of Hardware-based and Software-based Solutions

Authors: Andrzej Śluzek

Abstract:

To illustrate diversity of methods used to extract relevant (where the concept of relevance can be differently defined for different applications) visual data, the paper discusses three groups of such methods. They have been selected from a range of alternatives to highlight how hardware and software tools can be complementarily used in order to achieve various functionalities in case of different specifications of “relevant data". First, principles of gated imaging are presented (where relevance is determined by the range). The second methodology is intended for intelligent intrusion detection, while the last one is used for content-based image matching and retrieval. All methods have been developed within projects supervised by the author.

Keywords: Relevant visual data, gated imaging, intrusion detection, image matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
1679 Balancing Strategies for Parallel Content-based Data Retrieval Algorithms in a k-tree Structured Database

Authors: Radu Dobrescu, Matei Dobrescu, Daniela Hossu

Abstract:

The paper proposes a unified model for multimedia data retrieval which includes data representatives, content representatives, index structure, and search algorithms. The multimedia data are defined as k-dimensional signals indexed in a multidimensional k-tree structure. The benefits of using the k-tree unified model were demonstrated by running the data retrieval application on a six networked nodes test bed cluster. The tests were performed with two retrieval algorithms, one that allows parallel searching using a single feature, the second that performs a weighted cascade search for multiple features querying. The experiments show a significant reduction of retrieval time while maintaining the quality of results.

Keywords: balancing strategies, multimedia databases, parallelprocessing, retrieval algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1678 Extension and Evaluation of Interface “2D-RIB“ for Impression-Based Retrieval

Authors: S. Kikuchi, Y. Hashimoto, T. Takayama, T. Ikeda, Y. Murata

Abstract:

Recently, lots of researchers are attracted to retrieving multimedia database by using some impression words and their values. Ikezoe-s research is one of the representatives and uses eight pairs of opposite impression words. We had modified its retrieval interface and proposed '2D-RIB'. In '2D-RIB', after a retrieval person selects a single basic music, the system visually shows some other music around the basic one along relative position. He/she can select one of them fitting to his/her intention, as a retrieval result. The purpose of this paper is to improve his/her satisfaction level to the retrieval result in 2D-RIB. One of our extensions is to define and introduce the following two measures: 'melody goodness' and 'general acceptance'. We implement them in different five combinations. According to an evaluation experiment, both of these two measures can contribute to the improvement. Another extension is three types of customization. We have implemented them and clarified which customization is effective.

Keywords: Multimedia database, impression-based retrieval, interface, satisfaction level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
1677 Using Genetic Algorithm to Improve Information Retrieval Systems

Authors: Ahmed A. A. Radwan, Bahgat A. Abdel Latef, Abdel Mgeid A. Ali, Osman A. Sadek

Abstract:

This study investigates the use of genetic algorithms in information retrieval. The method is shown to be applicable to three well-known documents collections, where more relevant documents are presented to users in the genetic modification. In this paper we present a new fitness function for approximate information retrieval which is very fast and very flexible, than cosine similarity fitness function.

Keywords: Cosine similarity, Fitness function, Genetic Algorithm, Information Retrieval, Query learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
1676 Extended “2D-RIB“ for Impression-Based Satisfactory Retrieval and its Evaluation

Authors: T. Takayama, S. Kikuchi, Y. Hashimoto, T. Ikeda, Y. Murata

Abstract:

Recently, lots of researchers are attracted to retrieving multimedia database by using some impression words and their values. Ikezoe-s research is one of the representatives and uses eight pairs of opposite impression words. We had modified its retrieval interface and proposed '2D-RIB' in the previous work. The aim of the present paper is to improve his/her satisfaction level to the retrieval result in the 2D-RIB. Our method is to extend the 2D-RIB. One of our extensions is to define and introduce the following two measures: 'melody goodness' and 'general acceptance'. Another extension is three types of customization menus. The result of evaluation using a pilot system is as follows. Both of these two measures 'melody goodness' and -general acceptance- can contribute to the improvement. Moreover, it is effective if we introduce the customization menu which enables a retrieval person to reduce the strictness level of retrieval condition in an impression pair based on his/her need.

Keywords: Multimedia database, impression-based retrieval, interface, satisfaction level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
1675 A Medical Images Based Retrieval System using Soft Computing Techniques

Authors: Pardeep Singh, Sanjay Sharma

Abstract:

Content-Based Image Retrieval (CBIR) has been one on the most vivid research areas in the field of computer vision over the last 10 years. Many programs and tools have been developed to formulate and execute queries based on the visual or audio content and to help browsing large multimedia repositories. Still, no general breakthrough has been achieved with respect to large varied databases with documents of difering sorts and with varying characteristics. Answers to many questions with respect to speed, semantic descriptors or objective image interpretations are still unanswered. In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. In several articles, content based access to medical images for supporting clinical decision making has been proposed that would ease the management of clinical data and scenarios for the integration of content-based access methods into Picture Archiving and Communication Systems (PACS) have been created. This paper gives an overview of soft computing techniques. New research directions are being defined that can prove to be useful. Still, there are very few systems that seem to be used in clinical practice. It needs to be stated as well that the goal is not, in general, to replace text based retrieval methods as they exist at the moment.

Keywords: CBIR, GA, Rough sets, CBMIR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607
1674 A New Model of English-Vietnamese Bilingual Information Retrieval System

Authors: Chinh Trong Nguyen, Dang Tuan Nguyen

Abstract:

In this paper, we propose a new model of English- Vietnamese bilingual Information Retrieval system. Although there are so many CLIR systems had been researched and built, the accuracy of searching results in different languages that the CLIR system supports still need to improve, especially in finding bilingual documents. The problems identified in this paper are the limitation of machine translation-s result and the extra large collections of document to be found. So we try to establish a different model to overcome these problems.

Keywords: Bilingual Information Retrieval, Cross-lingual Information Retrieval, Bilingual Web sites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1673 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
1672 Fast Extraction of Edge Histogram in DCT Domain based on MPEG7

Authors: Minyoung Eom, Yoonsik Choe

Abstract:

In these days, multimedia data is transmitted and processed in compressed format. Due to the decoding procedure and filtering for edge detection, the feature extraction process of MPEG-7 Edge Histogram Descriptor is time-consuming as well as computationally expensive. To improve efficiency of compressed image retrieval, we propose a new edge histogram generation algorithm in DCT domain in this paper. Using the edge information provided by only two AC coefficients of DCT coefficients, we can get edge directions and strengths directly in DCT domain. The experimental results demonstrate that our system has good performance in terms of retrieval efficiency and effectiveness.

Keywords: DCT, Descriptor, EHD, MPEG7.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
1671 Enhancing Retrieval Effectiveness of Malay Documents by Exploiting Implicit Semantic Relationship between Words

Authors: Mohd Pouzi Hamzah, Tengku Mohd Tengku Sembok

Abstract:

Phrases has a long history in information retrieval, particularly in commercial systems. Implicit semantic relationship between words in a form of BaseNP have shown significant improvement in term of precision in many IR studies. Our research focuses on linguistic phrases which is language dependent. Our results show that using BaseNP can improve performance although above 62% of words formation in Malay Language based on derivational affixes and suffixes.

Keywords: Information Retrieval, Malay Language, Semantic Relationship, Retrieval Effectiveness, Conceptual Indexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
1670 Multi-agent Data Fusion Architecture for Intelligent Web Information Retrieval

Authors: Amin Milani Fard, Mohsen Kahani, Reza Ghaemi, Hamid Tabatabaee

Abstract:

In this paper we propose a multi-agent architecture for web information retrieval using fuzzy logic based result fusion mechanism. The model is designed in JADE framework and takes advantage of JXTA agent communication method to allow agent communication through firewalls and network address translators. This approach enables developers to build and deploy P2P applications through a unified medium to manage agent-based document retrieval from multiple sources.

Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
1669 Data Extraction of XML Files using Searching and Indexing Techniques

Authors: Sushma Satpute, Vaishali Katkar, Nilesh Sahare

Abstract:

XML files contain data which is in well formatted manner. By studying the format or semantics of the grammar it will be helpful for fast retrieval of the data. There are many algorithms which describes about searching the data from XML files. There are no. of approaches which uses data structure or are related to the contents of the document. In these cases user must know about the structure of the document and information retrieval techniques using NLPs is related to content of the document. Hence the result may be irrelevant or not so successful and may take more time to search.. This paper presents fast XML retrieval techniques by using new indexing technique and the concept of RXML. When indexing an XML document, the system takes into account both the document content and the document structure and assigns the value to each tag from file. To query the system, a user is not constrained about fixed format of query.

Keywords: XML Retrieval, Indexed Search, Information Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
1668 Using Dempster-Shafer Theory in XML Information Retrieval

Authors: F. Raja, M. Rahgozar, F. Oroumchian

Abstract:

XML is a markup language which is becoming the standard format for information representation and data exchange. A major purpose of XML is the explicit representation of the logical structure of a document. Much research has been performed to exploit logical structure of documents in information retrieval in order to precisely extract user information need from large collections of XML documents. In this paper, we describe an XML information retrieval weighting scheme that tries to find the most relevant elements in XML documents in response to a user query. We present this weighting model for information retrieval systems that utilize plausible inferences to infer the relevance of elements in XML documents. We also add to this model the Dempster-Shafer theory of evidence to express the uncertainty in plausible inferences and Dempster-Shafer rule of combination to combine evidences derived from different inferences.

Keywords: Dempster-Shafer theory, plausible inferences, XMLinformation retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
1667 ARCS for Critical Information Retrieval Development

Authors: Suttipong Boonphadung

Abstract:

The research on ARCS for critical information retrieval development aimed to (1) investigate conditions of critical information retrieval skill of the Mathematics pre-service teachers before applying ARCS model in learning activities, (2) study and analyze the development of critical information retrieval skill of the Mathematics pre-service teachers after utilizing ARCS model in learning activities, and (3) evaluate the Mathematics pre-service teachers’ satisfaction on using ARCS model in learning activities as a tool to development critical information retrieval skill. Forty-one of 4th year Mathematics pre-service teachers who have enrolled in the subject of Research for Learning Development of semester 2 in 2012 were purposively selected as the research cohort. The research tools were self-report and interview questionnaire that was approved as content validity and reliability (IOC=.66-1.00, α =.834). The research found that critical information retrieval skill of the research samples before using ARCS model in learning activities was in the normal high level. According to the in-depth interview and focus group, the result however showed that the pre-service teachers still lack inadequate and effective knowledge in information retrieval. Additionally, critical information retrieval skill of the research cohort after applying ARCS model in learning activities appeared to be high level. The result revealed that the pre-service teachers are able to explain the method of searching, extraction, and selecting information as well as evaluating quality of information, and effectively making decision in accepting information. Moreover, the research discovered that the pre-service teachers showed normal high to highest level of satisfaction on using ARCS model in learning activities as a tool to development their critical information retrieval skill.

Keywords: Critical information retrieval skill, ARCS model, Satisfaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1666 WebGD: A CORBA-based Document Classification and Retrieval System on the Web

Authors: Fuyang Peng, Bo Deng, Chao Qi, Mou Zhan

Abstract:

This paper presents the design and implementation of the WebGD, a CORBA-based document classification and retrieval system on Internet. The WebGD makes use of such techniques as Web, CORBA, Java, NLP, fuzzy technique, knowledge-based processing and database technology. Unified classification and retrieval model, classifying and retrieving with one reasoning engine and flexible working mode configuration are some of its main features. The architecture of WebGD, the unified classification and retrieval model, the components of the WebGD server and the fuzzy inference engine are discussed in this paper in detail.

Keywords: Text Mining, document classification, knowledgeprocessing, fuzzy logic, Web, CORBA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
1665 Graph Codes-2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval

Authors: Stefan Wagenpfeil, Felix Engel, Paul McKevitt, Matthias Hemmje

Abstract:

Multimedia Indexing and Retrieval is generally de-signed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, espe-cially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelisation. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information.

Keywords: indexing, retrieval, multimedia, graph code, graph algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 444
1664 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

Authors: C. Lodato, S. Lopes

Abstract:

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1663 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714