Search results for: classification framework.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2522

Search results for: classification framework.

2492 Vehicle Type Classification with Geometric and Appearance Attributes

Authors: Ghada S. Moussa

Abstract:

With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management.

This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.

Keywords: Appearance attributes, Geometric attributes, Support vector machine, Vehicle classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4278
2491 Wavelet and K-L Seperability Based Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

This paper proposes a novel feature extraction method, based on Discrete Wavelet Transform (DWT) and K-L Seperability (KLS), for the classification of Functional Data (FD). This method combines the decorrelation and reduction property of DWT and the additive independence property of KLS, which is helpful to extraction classification features of FD. It is an advanced approach of the popular wavelet based shrinkage method for functional data reduction and classification. A theory analysis is given in the paper to prove the consistent convergence property, and a simulation study is also done to compare the proposed method with the former shrinkage ones. The experiment results show that this method has advantages in improving classification efficiency, precision and robustness.

Keywords: classification, functional data, feature extraction, K-Lseperability, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
2490 Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks

Authors: Mohammed Benbrahim, Khalid Benjelloun, Aomar Ibenbrahim, Adil Daoudi

Abstract:

The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Ben Wavelet, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
2489 An Amalgam Approach for DICOM Image Classification and Recognition

Authors: J. Umamaheswari, G. Radhamani

Abstract:

This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.

Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
2488 Improving Classification Accuracy with Discretization on Datasets Including Continuous Valued Features

Authors: Mehmet Hacibeyoglu, Ahmet Arslan, Sirzat Kahramanli

Abstract:

This study analyzes the effect of discretization on classification of datasets including continuous valued features. Six datasets from UCI which containing continuous valued features are discretized with entropy-based discretization method. The performance improvement between the dataset with original features and the dataset with discretized features is compared with k-nearest neighbors, Naive Bayes, C4.5 and CN2 data mining classification algorithms. As the result the classification accuracies of the six datasets are improved averagely by 1.71% to 12.31%.

Keywords: Data mining classification algorithms, entropy-baseddiscretization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
2487 Computer-aided Lenke Classification of Scoliotic Spines

Authors: Neila Mezghani, Philippe Phan, Hubert Labelle, Carl Eric Aubin, Jacques de Guise

Abstract:

The identification and classification of the spine deformity play an important role when considering surgical planning for adolescent patients with idiopathic scoliosis. The subject of this article is the Lenke classification of scoliotic spines using Cobb angle measurements. The purpose is two-fold: (1) design a rulebased diagram to assist clinicians in the classification process and (2) investigate a computer classifier which improves the classification time and accuracy. The rule-based diagram efficiency was evaluated in a series of scoliotic classifications by 10 clinicians. The computer classifier was tested on a radiographic measurement database of 603 patients. Classification accuracy was 93% using the rule-based diagram and 99% for the computer classifier. Both the computer classifier and the rule based diagram can efficiently assist clinicians in their Lenke classification of spine scoliosis.

Keywords: Scoliosis, Lenke model, decision-rules, computer aided classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
2486 Dataset Analysis Using Membership-Deviation Graph

Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh

Abstract:

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Keywords: feature, classification, machine learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
2485 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
2484 Novel Hybrid Method for Gene Selection and Cancer Prediction

Authors: Liping Jing, Michael K. Ng, Tieyong Zeng

Abstract:

Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.

Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
2483 Gene Selection Guided by Feature Interdependence

Authors: Hung-Ming Lai, Andreas Albrecht, Kathleen Steinhöfel

Abstract:

Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.

Keywords: Colon cancer, feature interdependence, feature subset selection, gene selection, microarray data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
2482 WebGD: A CORBA-based Document Classification and Retrieval System on the Web

Authors: Fuyang Peng, Bo Deng, Chao Qi, Mou Zhan

Abstract:

This paper presents the design and implementation of the WebGD, a CORBA-based document classification and retrieval system on Internet. The WebGD makes use of such techniques as Web, CORBA, Java, NLP, fuzzy technique, knowledge-based processing and database technology. Unified classification and retrieval model, classifying and retrieving with one reasoning engine and flexible working mode configuration are some of its main features. The architecture of WebGD, the unified classification and retrieval model, the components of the WebGD server and the fuzzy inference engine are discussed in this paper in detail.

Keywords: Text Mining, document classification, knowledgeprocessing, fuzzy logic, Web, CORBA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
2481 A Multi-Agent Framework for Data Mining

Authors: Kamal Ali Albashiri, Khaled Ahmed Kadouh

Abstract:

A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios.

Keywords: Multi-Agent Data Mining (MADM), Frequent Itemsets, Meta ARM, Association Rule Mining, Classifier generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
2480 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
2479 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection

Authors: K.M. Faraoun, A. Boukelif

Abstract:

This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].

Keywords: Genetic programming, patterns classification, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
2478 Feature Selection for Web Page Classification Using Swarm Optimization

Authors: B. Leela Devi, A. Sankar

Abstract:

The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.

Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259
2477 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong

Abstract:

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
2476 Machine Learning Approach for Identifying Dementia from MRI Images

Authors: S. K. Aruna, S. Chitra

Abstract:

This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.

Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
2475 Support Vector Machine Approach for Classification of Cancerous Prostate Regions

Authors: Metehan Makinacı

Abstract:

The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.

Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
2474 Comparison between Different Classifications of Periodontal Diseases and Their Advantages

Authors: Ilma Robo, Saimir Heta, Merilda Tarja, Sonila Kapaj, Eduart Kapaj, Geriona Lasku

Abstract:

The classification of periodontal diseases has changed significantly in favor of simplifying the protocol of diagnosis and periodontal treatment. This review study aims to highlight the latest publications in the new periodontal disease classification, talking about the most significant differences versus the old classification with the tendency to express the advantages or disadvantages of clinical application. The aim of the study also includes the growing tendency to link the way of classification of periodontal diseases with predetermined protocols of periodontal treatment of the diagnoses included in the classification. The new classification of periodontal diseases is rather comprehensive in its subdivisions, as the disease is viewed in its entirety, with the biological dimensions of the disease, the degree of aggravation and progression of the disease, in relation to risk factors, predisposition to patient susceptibility and impact of periodontal disease to the general health status of the patient.

Keywords: Periodontal diseases, clinical application, periodontal treatment, oral diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
2473 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
2472 An Efficient Classification Method for Inverse Synthetic Aperture Radar Images

Authors: Sang-Hong Park

Abstract:

This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.

Keywords: Radar, ISAR, radar target classification, radar imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
2471 A New Approach for Fingerprint Classification based on Minutiae Distribution

Authors: Jayant V Kulkarni, Jayadevan R, Suresh N Mali, Hemant K Abhyankar, Raghunath S Holambe

Abstract:

The paper describes a new approach for fingerprint classification, based on the distribution of local features (minute details or minutiae) of the fingerprints. The main advantage is that fingerprint classification provides an indexing scheme to facilitate efficient matching in a large fingerprint database. A set of rules based on heuristic approach has been proposed. The area around the core point is treated as the area of interest for extracting the minutiae features as there are substantial variations around the core point as compared to the areas away from the core point. The core point in a fingerprint has been located at a point where there is maximum curvature. The experimental results report an overall average accuracy of 86.57 % in fingerprint classification.

Keywords: Minutiae distribution, Minutiae, Classification, Orientation, Heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
2470 Content-based Indoor/Outdoor Video Classification System for a Mobile Platform

Authors: Mitko Veta, Tomislav Kartalov, Zoran Ivanovski

Abstract:

Organization of video databases is becoming difficult task as the amount of video content increases. Video classification based on the content of videos can significantly increase the speed of tasks such as browsing and searching for a particular video in a database. In this paper, a content-based videos classification system for the classes indoor and outdoor is presented. The system is intended to be used on a mobile platform with modest resources. The algorithm makes use of the temporal redundancy in videos, which allows using an uncomplicated classification model while still achieving reasonable accuracy. The training and evaluation was done on a video database of 443 videos downloaded from a video sharing service. A total accuracy of 87.36% was achieved.

Keywords: Indoor/outdoor, video classification, imageclassification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
2469 Chilean Wines Classification based only on Aroma Information

Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos

Abstract:

Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.

Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
2468 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods

Authors: M. Sinecen, M. Makinacı

Abstract:

The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.

Keywords: Artificial neural networks, texture classification, cancer diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
2467 Improving RBF Networks Classification Performance by using K-Harmonic Means

Authors: Z. Zainuddin, W. K. Lye

Abstract:

In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.

Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
2466 Automatic Fingerprint Classification Using Graph Theory

Authors: Mana Tarjoman, Shaghayegh Zarei

Abstract:

Using efficient classification methods is necessary for automatic fingerprint recognition system. This paper introduces a new structural approach to fingerprint classification by using the directional image of fingerprints to increase the number of subclasses. In this method, the directional image of fingerprints is segmented into regions consisting of pixels with the same direction. Afterwards the relational graph to the segmented image is constructed and according to it, the super graph including prominent information of this graph is formed. Ultimately we apply a matching technique to compare obtained graph with the model graphs in order to classify fingerprints by using cost function. Increasing the number of subclasses with acceptable accuracy in classification and faster processing in fingerprints recognition, makes this system superior.

Keywords: Classification, Directional image, Fingerprint, Graph, Super graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3633
2465 Wavelet - Based Classification of Outdoor Natural Scenes by Resilient Neural Network

Authors: Amitabh Wahi, Sundaramurthy S.

Abstract:

Natural outdoor scene classification is active and promising research area around the globe. In this study, the classification is carried out in two phases. In the first phase, the features are extracted from the images by wavelet decomposition method and stored in a database as feature vectors. In the second phase, the neural classifiers such as back-propagation neural network (BPNN) and resilient back-propagation neural network (RPNN) are employed for the classification of scenes. Four hundred color images are considered from MIT database of two classes as forest and street. A comparative study has been carried out on the performance of the two neural classifiers BPNN and RPNN on the increasing number of test samples. RPNN showed better classification results compared to BPNN on the large test samples.

Keywords: BPNN, Classification, Feature extraction, RPNN, Wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
2464 The Development of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications

Authors: Mohamed R. Mhereeg

Abstract:

The paper investigates the feasibility of constructing a software multi-agent based monitoring and classification system and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. The agents function autonomously to provide continuous and periodic monitoring of excels spreadsheet workbooks. Resulting in, the development of the MultiAgent classification System (MACS) that is in compliance with the specifications of the Foundation for Intelligent Physical Agents (FIPA). However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies that are Windows Communication Foundation (WCF) services, Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). The Microsoft's .NET widows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW that is in order to satisfy the monitoring and classification of the multiple developer aspect. ODM was used to automate the classification phase of MACS.

Keywords: Autonomous, Classification, MACS, Multi-Agent, SOA, WCF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
2463 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions

Authors: S. Pattanapairoj, D. Chetchotsak

Abstract:

This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.

Keywords: Sparse data, Classifications, Committee network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735