Search results for: brain balancing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 358

Search results for: brain balancing

328 Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity

Authors: Mridul Sharma, Praveen Saroha

Abstract:

In today's world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF).

Keywords: Basolateral amygdala, brain derived neurotrophic factor, brain plasticity, diet, exercise, mediterranean diet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
327 Vincristine-Dextran Complex Loaded Solid Lipid Nanoparticles for Drug Delivery to the Brain

Authors: E. Aboutaleb, R. Dinarvand

Abstract:

The purpose of this work was to inspect the potential of vincristine-dextran complex loaded solid lipid nanoparticles for drug delivery to the brain. The nanoparticles were stained with a fluorescence dye and their plasma pharmacokinetic and brain concentrations were investigated following injection to rats. The result revealed a significant improvement in the plasma concentration profile of the SLN injected animals as well as a sharp increased concentration in the brains.

Keywords: Brain, Coumarin-6, Nanoparticles, SLN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
326 Applying Branch-and-Bound and Petri Net Methods in Solving the Two-Sided Assembly Line Balancing Problem

Authors: Nai-Chieh Wei, I-Ming Chao, Chin-Jung Liuand, Hong Long Chen

Abstract:

This paper combines the branch-and-bound method and the petri net to solve the two-sided assembly line balancing problem, thus facilitating effective branching and pruning of tasks. By integrating features of the petri net, such as reachability graph and incidence matrix, the propose method can support the branch-and-bound to effectively reduce poor branches with systematic graphs. Test results suggest that using petri net in the branching process can effectively guide the system trigger process, and thus, lead to consistent results.

 

Keywords: Branch-and-Bound Method, Petri Net, Two-Sided Assembly Line Balancing Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
325 The Effect of the Hemispheres of the Brain and the Tone of Voice on Persuasion

Authors: Rica Jell de Laza, Jose Alberto Fernandez, Andrea Marie Mendoza, Qristin Jeuel Regalado

Abstract:

This study investigates whether participants experience different levels of persuasion depending on the hemisphere of the brain and the tone of voice. The experiment was performed on 96 volunteer undergraduate students taking an introductory course in psychology. The participants took part in a 2 x 3 (Hemisphere: left, right x Tone of Voice: positive, neutral, negative) Mixed Factorial Design to measure how much a person was persuaded. Results showed that the hemisphere of the brain and the tone of voice used did not significantly affect the results individually. Furthermore, there was no interaction effect. Therefore, the hemispheres of the brain and the tone of voice employed play insignificant roles in persuading a person.

Keywords: Dichotic listening, brain hemisphere, tone of voice, persuasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
324 Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi

Abstract:

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.

Keywords: Riemannian manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
323 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
322 A Practical Method for Load Balancing in the LV Distribution Networks Case Study: Tabriz Electrical Network

Authors: A. Raminfard, S. M. Shahrtash

Abstract:

In this paper, a new efficient method for load balancing in low voltage distribution systems is presented. The proposed method introduces an improved Leap-frog method for optimization. The proposed objective function includes the difference between three phase currents, as well as two other terms to provide the integer property of the variables; where the latter are the status of the connection of loads to different phases. Afterwards, a new algorithm is supplemented to undertake the integer values for the load connection status. Finally, the method is applied to different parts of Tabriz low voltage network, where the results have shown the good performance of the proposed method.

Keywords: Load balancing, improved leap-frog method, optimization algorithm, low voltage distribution systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3424
321 Framework Study on Single Assembly Line to Improve Productivity with Six Sigma and Line Balancing Approach

Authors: Inaki Maulida Hakim, T. Yuri M. Zagloel, Astari Wulandari

Abstract:

Six sigma is a framework that is used to identify inefficiency so that the cause of inefficiency will be known and right improvement to overcome cause of inefficiency can be conducted. This paper presents result of implementing six sigma to improve piston assembly line in Manufacturing Laboratory, Universitas Indonesia. Six sigma framework will be used to analyze the significant factor of inefficiency that needs to be improved which causes bottleneck in assembly line. After analysis based on six sigma framework conducted, line balancing method was chosen for improvement to overcome causative factor of inefficiency which is differences time between workstation that causes bottleneck in assembly line. Then after line balancing conducted in piston assembly line, the result is increase in efficiency. Efficiency is shown in the decreasing of Defects per Million Opportunities (DPMO) from 900,000 to 700,000, the increasing of level of labor productivity from 0.0041 to 0.00742, the decreasing of idle time from 121.3 seconds to 12.1 seconds, and the increasing of output, which is from 1 piston in 5 minutes become 3 pistons in 5 minutes.

Keywords: Assembly line, efficiency, improvement, line balancing, productivity, six sigma, workstation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
320 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
319 Meditation Based Brain Painting Promoting Foreign Language Memory through Establishing a Brain-Computer Interface

Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny

Abstract:

In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide insights into meditation, creative language education, brain-computer interface, and human-computer interactions.

Keywords: Brain-computer interface, creative thinking, meditation, mental health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
318 On the Analysis of Bandwidth Management for Hybrid Load Balancing Scheme in WLANs

Authors: Chutima Prommak, Airisa Jantaweetip

Abstract:

In wireless networks, bandwidth is scare resource and it is essential to utilize it effectively. This paper analyses effects of using different bandwidth management techniques on the network performances of the Wireless Local Area Networks (WLANs) that use hybrid load balancing scheme. In particular, we study three bandwidth management schemes, namely Complete Sharing (CS), Complete Partitioning (CP), and Partial Sharing (PS). Performances of these schemes are evaluated by simulation experiments in term of percentage of network association blocking. Our results show that the CS scheme can provide relatively low blocking percentage in various network traffic scenarios whereas the PS scheme can enhance quality of services of the multimedia traffic with rather small expenses on the blocking percentage of the best effort traffic.

Keywords: Bandwidth management, Load Balancing, WLANs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
317 Brain Drain of Doctors; Causes and Consequences in Pakistan

Authors: Muhammad Wajid Tahir, Rubina Kauser, Majid Ali Tahir

Abstract:

Pakistani doctors (MBBS) are emigrating towards developed countries for professional adjustments. This study aims to highlight causes and consequences of doctors- brain drain from Pakistan. Primary data was collected from Mayo Hospital, Lahore by interviewing doctors (n=100) through systematic random sampling technique. It found that various socio-economic and political conditions are working as push and pull factors for brain drain of doctors in Pakistan. Majority of doctors (83%) declared poor remunerations and professional infrastructure of health department as push factor of doctors- brain drain. 81% claimed that continuous instability in political situation and threats of terrorism are responsible for emigration of doctors. 84% respondents considered fewer opportunities of further studies responsible for their emigration. Brain drain of doctors is affecting health sector-s policies / programs, standard doctor-patient ratios and quality of health services badly.

Keywords: Brain Drain, Emigration, Remuneration, Politicalinstability, MBBS doctors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4620
316 A Linearization and Decomposition Based Approach to Minimize the Non-Productive Time in Transfer Lines

Authors: Hany Osman, M. F. Baki

Abstract:

We address the balancing problem of transfer lines in this paper to find the optimal line balancing that minimizes the nonproductive time. We focus on the tool change time and face orientation change time both of which influence the makespane. We consider machine capacity limitations and technological constraints associated with the manufacturing process of auto cylinder heads. The problem is represented by a mixed integer programming model that aims at distributing the design features to workstations and sequencing the machining processes at a minimum non-productive time. The proposed model is solved by an algorithm established using linearization schemes and Benders- decomposition approach. The experiments show the efficiency of the algorithm in reaching the exact solution of small and medium problem instances at reasonable time.

Keywords: Transfer line balancing, Benders' decomposition, Linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
315 Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II

Authors: Tao Yin, Zeqiang Zhang, Wei Liang, Yanqing Zeng, Yu Zhang

Abstract:

To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.

Keywords: Waste disposal, disassembly line balancing, multi-robot station, robotic efficiency difference, HNSGA-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 527
314 3D Brain Tumor Segmentation Using Level-Sets Method and Meshes Simplification from Volumetric MR Images

Authors: K. Aloui, M. S. Naceur

Abstract:

The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images. To achieve this goal, we use basically a level-sets approach to delineating three-dimensional brain tumors. Then we introduce a compression plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.

Keywords: Medical imaging, level-sets, compression, meshess implification, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
313 Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems

Authors: Jianwei Wang, Timo Korhonen, Yuping Zhao

Abstract:

Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.

Keywords: OFDMA, Fairness, AWUF, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
312 Line Balancing in the Hard Disk Drive Process Using Simulation Techniques

Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat

Abstract:

Simulation model is an easy way to build up models to represent real life scenarios, to identify bottlenecks and to enhance system performance. Using a valid simulation model may give several advantages in creating better manufacturing design in order to improve the system performances. This paper presents result of implementing a simulation model to design hard disk drive manufacturing process by applying line balancing to improve both productivity and quality of hard disk drive process. The line balance efficiency showed 86% decrease in work in process, output was increased by an average of 80%, average time in the system was decreased 86% and waiting time was decreased 90%.

Keywords: line balancing, arena, hard disk drive process, simulation, work in process (WIP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
311 A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks

Authors: Abdallah Al Sabbagh

Abstract:

Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.

Keywords: Heterogeneous Wireless Network, Markov chain model, load-balancing based and service based algorithm, CRRM algorithms, Beyond 3G network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
310 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

Authors: Terrence Chen, Thomas S. Huang

Abstract:

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
309 Brain MRI Segmentation and Lesions Detection by EM Algorithm

Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane

Abstract:

In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.

Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
308 Resource Constraint Mobile Agent Framework For Ambient Intelligence

Authors: Yung-Chuan Lee, Shahram Rahimi, Bidyut Gupta

Abstract:

In this paper, we introduce an mobile agent framework with proactive load balancing for ambient intelligence (AmI) environments. One of the main obstacles of AmI is the scalability in which the openness of AmI environment introduces dynamic resource requirements on agencies. To mediate this scalability problem, our framework proposes a load balancing module to proactively analyze the resource consumption of network bandwidth and preferred agencies to suggest the optimal communication method to its user. The framework generally formulates an AmI environment that consists of three main components: (1) mobile devices, (2) hosts or agencies, and (3) directory service center (DSC). A preliminary implementation was conducted with NetLogo and the experimental results show that the proposed approach provides enhanced system performance by minimizing the network utilization to provide users with responsive services.

Keywords: Ambient intelligence, load balancing, multiagent systems, ubiquitous computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
307 3D Segmentation, Compression and Wireless Transmission of Volumetric Brain MR Images

Authors: K. Aloui, M. S. Naceur

Abstract:

The main objective of this paper is to provide an efficient tool for delineating brain tumors in three-dimensional magnetic resonance images and set up compression-transmit schemes to distribute result to the remote doctor. To achieve this goal, we use basically a level-sets approach to delineating brain tumors in threedimensional. Then introduce a new compression and transmission plan of 3D brain structures based for the meshes simplification, adapted for time to the specific needs of the telemedicine and to the capacities restricted by wireless network communication. We present here the main stages of our system, and preliminary results which are very encouraging for clinical practice.

Keywords: Medical imaging, level-sets, compression, meshessimplification, telemedicine, wireless transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
306 Fuzzy Based Particle Swarm Optimization Routing Technique for Load Balancing in Wireless Sensor Networks

Authors: S. Balaji, E. Golden Julie, M. Rajaram, Y. Harold Robinson

Abstract:

Network lifetime improvement and uncertainty in multiple systems are the issues of wireless sensor network routing. This paper presents fuzzy based particle swarm optimization routing technique to improve the network scalability. Significantly, in the cluster formation procedure, fuzzy based system is used to solve the uncertainty and network balancing. Cluster heads play an important role to reduce the energy consumption using particle swarm optimization algorithm, the cluster head sends its information along data packets to the heads with link. The simulation results show that the presented routing protocol can perform load balancing effectively and reduce the energy consumption of cluster heads.

Keywords: Wireless sensor networks, fuzzy logic, PSO, LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
305 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: Analytical method, mechanical responses, spherical wave propagation, traumatic brain injury.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
304 The Effect of Loperamide and Fentanyl on the Distribution Kinetics of Verapamil in the Lung and Brain in Sprague Dawley Rats

Authors: Iman A. Elkiweri, Ph.D, Martha C. Tissot van Patot, Ph.D., Yan Ling Zhang, Ph.D., Uwe Christians, Ph.D., Thomas K. Henthorn, M.D.,

Abstract:

Verapamil has been shown to inhibit fentanyl uptake in vitro and is a potent P-glycoprotein inhibitor. Tissue partitioning of loperamide, a commercially available opioid, is closely controlled by the P-gp efflux transporter. The following studies were designed to evaluate the effect of opioids on verapamil partitioning in the lung and brain, in vivo. Opioid (fentanyl or loperamide) was administered by intravenous infusion to Sprague Dawley rats alone or in combination with verapamil and plasma, with lung and brain tissues were collected at 1, 5, 6, 8, 10 and 60 minutes. Drug dispositions were modeled by recirculatory pharmacokinetic models. Fentanyl slightly increased the verapamil lung (PL) partition coefficient yet decreased the brain (PB) partition coefficient. Furthermore, loperamide significantly increased PLand PB. Fentanyl reduced the verapamil volume of distribution (V1) and verapamil elimination clearance (ClE). Fentanyl decreased verapamil brain partitioning, yet increased verapamil lung partitioning. Also, loperamide increased lung and brain partitioning in vivo. These results suggest that verapamil and fentanyl may be substrates of an unidentified inward transporter in brain tissue and confirm that verapamil and loperamide are substrates of the efflux transporter P-gp.

Keywords: Efflux transporter, elimination clearance, partition coefficient, verapamil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
303 Expression of Gen Extracellular Matrix and Cell Adhesion Molecule of Brain Embrio Mice at GD-10 By Real Time RT-PCR

Authors: Yulia Irnidayanti, Win Darmanto, Agus Abadi

Abstract:

research goal was to determine the expression levels cDNA of brain embrio at gestation days 10 (GD-10). The Electroforesis DNA results showed that GAPDH, Fibronectin1, Ncam1, Tenascin, Vimentin, Neurofilament heavy, Neurofilament medium and Neurofilament low were 447 bp, 462 bp, 293 bp. 416 bp, 327 bp, 301 bp, 398 bp and 289 bp. Result of real-time RT-PCR on brain Embryo at gestation days 10 showed that the expression of copy gen Fibronectin 36 copies, Ncam 21,708 copies; Tenascin 24,505 copies; Vimentin 538,554 copies; Neurofilament heavy 2,419 copies; Neurofilament medium 92,928 copies; Neurofilament low 125,809 copies. Vimentin expressed gene copies is very high compared with other gene copies. This condition are caused by Vimentin, that contribute to proliferate of brain development. The vimentin role to cell proliferation of brain.

Keywords: GAPDH, Fibronectin, Ncam, Tenascin, vimentin, Neurofilamen heavy, Neurofilament medium, Neurofilamen low.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
302 Qualitative Parametric Comparison of Load Balancing Algorithms in Parallel and Distributed Computing Environment

Authors: Amit Chhabra, Gurvinder Singh, Sandeep Singh Waraich, Bhavneet Sidhu, Gaurav Kumar

Abstract:

Decrease in hardware costs and advances in computer networking technologies have led to increased interest in the use of large-scale parallel and distributed computing systems. One of the biggest issues in such systems is the development of effective techniques/algorithms for the distribution of the processes/load of a parallel program on multiple hosts to achieve goal(s) such as minimizing execution time, minimizing communication delays, maximizing resource utilization and maximizing throughput. Substantive research using queuing analysis and assuming job arrivals following a Poisson pattern, have shown that in a multi-host system the probability of one of the hosts being idle while other host has multiple jobs queued up can be very high. Such imbalances in system load suggest that performance can be improved by either transferring jobs from the currently heavily loaded hosts to the lightly loaded ones or distributing load evenly/fairly among the hosts .The algorithms known as load balancing algorithms, helps to achieve the above said goal(s). These algorithms come into two basic categories - static and dynamic. Whereas static load balancing algorithms (SLB) take decisions regarding assignment of tasks to processors based on the average estimated values of process execution times and communication delays at compile time, Dynamic load balancing algorithms (DLB) are adaptive to changing situations and take decisions at run time. The objective of this paper work is to identify qualitative parameters for the comparison of above said algorithms. In future this work can be extended to develop an experimental environment to study these Load balancing algorithms based on comparative parameters quantitatively.

Keywords: SLB, DLB, Host, Algorithm and Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
301 Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images

Authors: G.Wiselin Jiji, L.Ganesan

Abstract:

Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.

Keywords: Fuzzy Texture Unit, Fuzzy Texture Spectrum, andPattern Recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
300 Electroencephalography Based Brain-Computer Interface for Cerebellum Impaired Patients

Authors: Young-Seok Choi

Abstract:

In healthy humans, the cortical brain rhythm shows specific mu (~6-14 Hz) and beta (~18-24 Hz) band patterns in the cases of both real and imaginary motor movements. As cerebellar ataxia is associated with impairment of precise motor movement control as well as motor imagery, ataxia is an ideal model system in which to study the role of the cerebellocortical circuit in rhythm control. We hypothesize that the EEG characteristics of ataxic patients differ from those of controls during the performance of a Brain-Computer Interface (BCI) task. Ataxia and control subjects showed a similar distribution of mu power during cued relaxation. During cued motor imagery, however, the ataxia group showed significant spatial distribution of the response, while the control group showed the expected decrease in mu-band power (localized to the motor cortex).

Keywords: Brain-computer interface, EEG, modulation, ataxia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
299 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs

Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong

Abstract:

The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.

Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903