Search results for: Startup data analytics
7447 Big Data: Concepts, Technologies and Applications in the Public Sector
Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora
Abstract:
Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.
Keywords: Big data, big data Analytics, Hadoop framework, cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23217446 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.
Keywords: Big Data, Next Generation Networks, Network Transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25167445 The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant
Authors: S. W. Chen, W. K. Lin, J. R. Wang, C. Shih, H. T. Lin, H. C. Chang, W. Y. Li
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 type NPP and located on the northern coast of Taiwan. First, Kuosheng NPP TRACE model were developed in this research. In order to assess the system response of Kuosheng NPP TRACE model, startup tests data were used to evaluate Kuosheng NPP TRACE model. Second, the overpressurization transient analysis of Kuosheng NPP TRACE model was performed. Besides, in order to confirm the mechanical property and integrity of fuel rods, FRAPTRAN analysis was also performed in this study.
Keywords: TRACE, Safety analysis, BWR/6, FRAPTRAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21857444 Coupling Heat and Mass Transfer for Hydrogen-Assisted Self-Ignition Behaviors of Propane-Air Mixtures in Catalytic Micro-Channels
Authors: Junjie Chen, Deguang Xu
Abstract:
Transient simulation of the hydrogen-assisted self-ignition of propane-air mixtures were carried out in platinum-coated micro-channels from ambient cold-start conditions, using a two-dimensional model with reduced-order reaction schemes, heat conduction in the solid walls, convection and surface radiation heat transfer. The self-ignition behavior of hydrogen-propane mixed fuel is analyzed and compared with the heated feed case. Simulations indicate that hydrogen can successfully cause self-ignition of propane-air mixtures in catalytic micro-channels with a 0.2 mm gap size, eliminating the need for startup devices. The minimum hydrogen composition for propane self-ignition is found to be in the range of 0.8-2.8% (on a molar basis), and increases with increasing wall thermal conductivity, and decreasing inlet velocity or propane composition. Higher propane-air ratio results in earlier ignition. The ignition characteristics of hydrogen-assisted propane qualitatively resemble the selectively inlet feed preheating mode. Transient response of the mixed hydrogen- propane fuel reveals sequential ignition of propane followed by hydrogen. Front-end propane ignition is observed in all cases. Low wall thermal conductivities cause earlier ignition of the mixed hydrogen-propane fuel, subsequently resulting in low exit temperatures. The transient-state behavior of this micro-scale system is described, and the startup time and minimization of hydrogen usage are discussed.
Keywords: Micro-combustion, Self-ignition, Hydrogen addition, Heat transfer, Catalytic combustion, Transient simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18857443 Heterogeneous-Resolution and Multi-Source Terrain Builder for CesiumJS WebGL Virtual Globe
Authors: Umberto Di Staso, Marco Soave, Alessio Giori, Federico Prandi, Raffaele De Amicis
Abstract:
The increasing availability of information about earth surface elevation (Digital Elevation Models DEM) generated from different sources (remote sensing, Aerial Images, Lidar) poses the question about how to integrate and make available to the most than possible audience this huge amount of data. In order to exploit the potential of 3D elevation representation the quality of data management plays a fundamental role. Due to the high acquisition costs and the huge amount of generated data, highresolution terrain surveys tend to be small or medium sized and available on limited portion of earth. Here comes the need to merge large-scale height maps that typically are made available for free at worldwide level, with very specific high resolute datasets. One the other hand, the third dimension increases the user experience and the data representation quality, unlocking new possibilities in data analysis for civil protection, real estate, urban planning, environment monitoring, etc. The open-source 3D virtual globes, which are trending topics in Geovisual Analytics, aim at improving the visualization of geographical data provided by standard web services or with proprietary formats. Typically, 3D Virtual globes like do not offer an open-source tool that allows the generation of a terrain elevation data structure starting from heterogeneous-resolution terrain datasets. This paper describes a technological solution aimed to set up a so-called “Terrain Builder”. This tool is able to merge heterogeneous-resolution datasets, and to provide a multi-resolution worldwide terrain services fully compatible with CesiumJS and therefore accessible via web using traditional browser without any additional plug-in.Keywords: Terrain builder, WebGL, virtual globe, CesiumJS, tiled map service, TMS, height-map, regular grid, Geovisual analytics, DTM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23987442 Influenza Pattern Analysis System through Mining Weblogs
Authors: Pei Lin Khoo, Yunli Lee
Abstract:
Weblogs are resource of social structure to discover and track the various type of information written by blogger. In this paper, we proposed to use mining weblogs technique for identifying the trends of influenza where blogger had disseminated their opinion for the anomaly disease. In order to identify the trends, web crawler is applied to perform a search and generated a list of visited links based on a set of influenza keywords. This information is used to implement the analytics report system for monitoring and analyzing the pattern and trends of influenza (H1N1). Statistical and graphical analysis reports are generated. Both types of the report have shown satisfactory reports that reflect the awareness of Malaysian on the issue of influenza outbreak through blogs.
Keywords: H1N1, Weblogs, Web Crawler, Analytics Report System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24667441 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.
Keywords: Agriculture 4.0, agri-food supply chain, Industry 4.0, voluntary traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23487440 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.
Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10757439 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: Road accident, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11297438 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12907437 Customer Churn Prediction: A Cognitive Approach
Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka
Abstract:
Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.
Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25597436 A System for Analyzing and Eliciting Public Grievances Using Cache Enabled Big Data
Authors: P. Kaladevi, N. Giridharan
Abstract:
The system for analyzing and eliciting public grievances serves its main purpose to receive and process all sorts of complaints from the public and respond to users. Due to the more number of complaint data becomes big data which is difficult to store and process. The proposed system uses HDFS to store the big data and uses MapReduce to process the big data. The concept of cache was applied in the system to provide immediate response and timely action using big data analytics. Cache enabled big data increases the response time of the system. The unstructured data provided by the users are efficiently handled through map reduce algorithm. The processing of complaints takes place in the order of the hierarchy of the authority. The drawbacks of the traditional database system used in the existing system are set forth by our system by using Cache enabled Hadoop Distributed File System. MapReduce framework codes have the possible to leak the sensitive data through computation process. We propose a system that add noise to the output of the reduce phase to avoid signaling the presence of sensitive data. If the complaints are not processed in the ample time, then automatically it is forwarded to the higher authority. Hence it ensures assurance in processing. A copy of the filed complaint is sent as a digitally signed PDF document to the user mail id which serves as a proof. The system report serves to be an essential data while making important decisions based on legislation.Keywords: Big Data, Hadoop, HDFS, Caching, MapReduce, web personalization, e-governance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15927435 Exploring Management of the Fuzzy Front End of Innovation in a Product Driven Startup Company
Authors: Dmitry K. Shaytan, Georgy D. Laptev
Abstract:
In our research we aimed to test a managerial approach for the fuzzy front end (FFE) of innovation by creating controlled experiment/ business case in a breakthrough innovation development. The experiment was in the sport industry and covered all aspects of the customer discovery stage from ideation to prototyping followed by patent application. In the paper we describe and analyze mile stones, tasks, management challenges, decisions made to create the break through innovation, evaluate overall managerial efficiency that was at the considered FFE stage. We set managerial outcome of the FFE stage as a valid product concept in hand. In our paper we introduce hypothetical construct “Q-factor” that helps us in the experiment to distinguish quality of FFE outcomes. The experiment simulated for entrepreneur the FFE of innovation and put on his shoulders responsibility for the outcome of valid product concept. While developing managerial approach to reach the outcome there was a decision to look on product concept from the cognitive psychology and cognitive science point of view. This view helped us to develop the profile of a person whose projection (mental representation) of a new product could optimize for a manager or entrepreneur FFE activities. In the experiment this profile was tested to develop breakthrough innovation for swimmers. Following the managerial approach the product concept was created to help swimmers to feel/sense water. The working prototype was developed to estimate the product concept validity and value added effect for customers. Based on feedback from coachers and swimmers there were strong positive effect that gave high value for customers, and for the experiment – the valid product concept being developed by proposed managerial approach for the FFE. In conclusions there is a suggestion of managerial approach that was derived from experiment.
Keywords: Concept development, concept testing, customer discovery, entrepreneurship, entrepreneurial management, idea generation, idea screening, startup management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18537434 Microclimate Variations in Rio de Janeiro Related to Massive Public Transportation
Authors: Marco E. O. Jardim, Frederico A. M. Souza, Valeria M. Bastos, Myrian C. A. Costa, Nelson F. F. Ebecken
Abstract:
Urban public transportation in Rio de Janeiro is based on bus lines, powered by diesel, and four limited metro lines that support only some neighborhoods. This work presents an infrastructure built to better understand microclimate variations related to massive urban transportation in some specific areas of the city. The use of sensor nodes with small analytics capacity provides environmental information to population or public services. The analyses of data collected from a few small sensors positioned near some heavy traffic streets show the harmful impact due to poor bus route plan.
Keywords: Big data, IoT, public transportation, public health system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10717433 TheAnalyzer: Clustering-Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human-Computer Interaction
Authors: D. S. A. Nanayakkara, K. J. P. G. Perera
Abstract:
E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. TheAnalyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling TheAnalyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.
Keywords: Data clustering, data standardization, dimensionality reduction, human-computer interaction, user profiling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287432 Virtual Learning Process Environment: Cohort Analytics for Learning and Learning Processes
Authors: Ayodeji Adesina, Derek Molloy
Abstract:
Traditional higher-education classrooms allow lecturers to observe students- behaviours and responses to a particular pedagogy during learning in a way that can influence changes to the pedagogical approach. Within current e-learning systems it is difficult to perform continuous analysis of the cohort-s behavioural tendency, making real-time pedagogical decisions difficult. This paper presents a Virtual Learning Process Environment (VLPE) based on the Business Process Management (BPM) conceptual framework. Within the VLPE, course designers can model various education pedagogies in the form of learning process workflows using an intuitive flow diagram interface. These diagrams are used to visually track the learning progresses of a cohort of students. This helps assess the effectiveness of the chosen pedagogy, providing the information required to improve course design. A case scenario of a cohort of students is presented and quantitative statistical analysis of their learning process performance is gathered and displayed in realtime using dashboards.
Keywords: Business process management, cohort analytics, learning processes, virtual learning environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28157431 Structuring and Visualizing Healthcare Claims Data Using Systems Architecture Methodology
Authors: Inas S. Khayal, Weiping Zhou, Jonathan Skinner
Abstract:
Healthcare delivery systems around the world are in crisis. The need to improve health outcomes while decreasing healthcare costs have led to an imminent call to action to transform the healthcare delivery system. While Bioinformatics and Biomedical Engineering have primarily focused on biological level data and biomedical technology, there is clear evidence of the importance of the delivery of care on patient outcomes. Classic singular decomposition approaches from reductionist science are not capable of explaining complex systems. Approaches and methods from systems science and systems engineering are utilized to structure healthcare delivery system data. Specifically, systems architecture is used to develop a multi-scale and multi-dimensional characterization of the healthcare delivery system, defined here as the Healthcare Delivery System Knowledge Base. This paper is the first to contribute a new method of structuring and visualizing a multi-dimensional and multi-scale healthcare delivery system using systems architecture in order to better understand healthcare delivery.Keywords: Health informatics, systems thinking, systems architecture, healthcare delivery system, data analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11387430 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyse huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic wellbeing is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that support the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.
Keywords: COVID-19, big data, data analysis, indexing, NoSQL, sharding, scalability, poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677429 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: Machine learning, Imbalanced data, Data mining, Big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11377428 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other artificial intelligence (AI)-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.
Keywords: Machine learning, text classification, NLP techniques, semantic representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407427 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7397426 Enhancing Predictive Accuracy in Pharmaceutical Sales Through an Ensemble Kernel Gaussian Process Regression Approach
Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf
Abstract:
This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matérn, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matérn, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.
Keywords: Gaussian Process Regression, Ensemble Kernels, Bayesian Optimization, Pharmaceutical Sales Analysis, Time Series Forecasting, Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117425 Microservices-Based Provisioning and Control of Network Services for Heterogeneous Networks
Authors: Shameemraj M. Nadaf, Sipra Behera, Hemant K. Rath, Garima Mishra, Raja Mukhopadhyay, Sumanta Patro
Abstract:
Microservices architecture has been widely embraced for rapid, frequent, and reliable delivery of complex applications. It enables organizations to evolve their technology stack in various domains. Today, the networking domain is flooded with plethora of devices and software solutions which address different functionalities ranging from elementary operations, viz., switching, routing, firewall etc., to complex analytics and insights based intelligent services. In this paper, we attempt to bring in the microservices based approach for agile and adaptive delivery of network services for any underlying networking technology. We discuss the life cycle management of each individual microservice and a distributed control approach with emphasis for dynamic provisioning, management, and orchestration in an automated fashion which can provide seamless operations in large scale networks. We have conducted validations of the system in lab testbed comprising of Traditional/Legacy and Software Defined Wireless Local Area networks.
Keywords: Microservices architecture, software defined wireless networks, traditional wireless networks, automation, orchestration, intelligent networks, network analytics, seamless management, single pane control, fine-grain control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8907424 Insight-Based Evaluation of a Map-based Dashboard
Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg
Abstract:
Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage, compared to task-based evaluation methods.
Keywords: Visual analytics, dashboard, insight-based evaluation, geographic visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4097423 Q-Map: Clinical Concept Mining from Clinical Documents
Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala
Abstract:
Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.Keywords: Information retrieval (IR), unified medical language system (UMLS), Syntax Based Analysis, natural language processing (NLP), medical informatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7797422 Status Report of the GERDA Phase II Startup
Authors: Valerio D’Andrea
Abstract:
The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.Keywords: Gerda, double beta decay, germanium, LNGS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15247421 Facebook Lessons for E-Business Startups
Authors: Linda, Sau-ling LAI
Abstract:
This paper addresses the fundamental requirements for starting an online business. It covers the process of ideation, conceptualization, formulation, and implementation of new venture ideas on the Web. Using Facebook as an illustrative example, we learn how to turn an idea into a successful electronic business and to execute a business plan with IT skills, management expertise, a good entrepreneurial attitude, and an understanding of Internet culture. The personality traits and characteristics of a successful e-commerce entrepreneur are discussed with reference to Facebook-s founder, Mark Zuckerberg. Facebook is a social and e-commerce success. It provides a trusted environment of which participants can conduct business with social experience. People are able to discuss products before, during the after the sale within the Facebook environment. The paper also highlights the challenges and opportunities for e-commerce entrepreneurial startups to go public and of entering the China market.Keywords: F-Commerce, Entrepreneur, Startup, E-Commerce
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26077420 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31507419 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare
Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams
Abstract:
The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.Keywords: Ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10447418 Telehealth Ecosystem: Challenge and Opportunity
Authors: R. Poonsuph
Abstract:
Technological innovation plays a crucial role in virtual healthcare services. A growing number of telehealth platforms are concentrating on using digital tools to improve the quality and availability of care. As a result, telehealth represents an opportunity to redesign the way health services are delivered. The research objective is to discover a new business model for digital health services and related industries to participate with telehealth solutions. The business opportunity is valuable for healthcare investors as a startup company to further investigations or implement the telehealth platform. The paper presents a digital healthcare business model and business opportunities to related industries. These include digital healthcare services extending from a traditional business model and use cases of business opportunities to related industries. Although there are enormous business opportunities, telehealth is still challenging due to the patient adaption and digital transformation process within a healthcare organization.
Keywords: telehealth, Internet hospital, HealthTech, InsurTech
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077