Search results for: Similarity Measure.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1367

Search results for: Similarity Measure.

1337 A Similarity Function for Global Quality Assessment of Retinal Vessel Segmentations

Authors: Arturo Aquino, Manuel Emilio Gegundez, Jose Manuel Bravo, Diego Marin

Abstract:

Retinal vascularity assessment plays an important role in diagnosis of ophthalmic pathologies. The employment of digital images for this purpose makes possible a computerized approach and has motivated development of many methods for automated vascular tree segmentation. Metrics based on contingency tables for binary classification have been widely used for evaluating performance of these algorithms and, concretely, the accuracy has been mostly used as measure of global performance in this topic. However, this metric shows very poor matching with human perception as well as other notable deficiencies. Here, a new similarity function for measuring quality of retinal vessel segmentations is proposed. This similarity function is based on characterizing the vascular tree as a connected structure with a measurable area and length. Tests made indicate that this new approach shows better behaviour than the current one does. Generalizing, this concept of measuring descriptive properties may be used for designing functions for measuring more successfully segmentation quality of other complex structures.

Keywords: Retinal vessel segmentation, quality assessment, performanceevaluation, similarity function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
1336 Product Configuration Strategy Based On Product Family Similarity

Authors: Heejung Lee

Abstract:

To offer a large variety of products while maintaining low costs, high speed, and high quality in a mass customization product development environment, platform based product development has much benefit and usefulness in many industry fields. This paper proposes a product configuration strategy by similarity measure, incorporating the knowledge engineering principles such as product information model, ontology engineering, and formal concept analysis.

Keywords: Platform, product family, ontology, formal concept analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
1335 Shape-Based Image Retrieval Using Shape Matrix

Authors: C. Sheng, Y. Xin

Abstract:

Retrieval image by shape similarity, given a template shape is particularly challenging, owning to the difficulty to derive a similarity measurement that closely conforms to the common perception of similarity by humans. In this paper, a new method for the representation and comparison of shapes is present which is based on the shape matrix and snake model. It is scaling, rotation, translation invariant. And it can retrieve the shape images with some missing or occluded parts. In the method, the deformation spent by the template to match the shape images and the matching degree is used to evaluate the similarity between them.

Keywords: shape representation, shape matching, shape matrix, deformation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1334 Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison

Authors: Frank Emmert-Streib, Matthias Dehmer, Jing Liu, Max Muhlhauser

Abstract:

The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Keywords: Graph similarity, generalized trees, graph alignment, DNA microarray data, cervical cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
1333 Similarity Based Membership of Elements to Uncertain Concept in Information System

Authors: M. Kamel El-Sayed

Abstract:

The process of determining the degree of membership for an element to an uncertain concept has been found in many ways, using equivalence and symmetry relations in information systems. In the case of similarity, these methods did not take into account the degree of symmetry between elements. In this paper, we use a new definition for finding the membership based on the degree of symmetry. We provide an example to clarify the suggested methods and compare it with previous methods. This method opens the door to more accurate decisions in information systems.

Keywords: Information system, uncertain concept, membership function, similarity relation, degree of similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
1332 SAF: A Substitution and Alignment Free Similarity Measure for Protein Sequences

Authors: Abdellali Kelil, Shengrui Wang, Ryszard Brzezinski

Abstract:

The literature reports a large number of approaches for measuring the similarity between protein sequences. Most of these approaches estimate this similarity using alignment-based techniques that do not necessarily yield biologically plausible results, for two reasons. First, for the case of non-alignable (i.e., not yet definitively aligned and biologically approved) sequences such as multi-domain, circular permutation and tandem repeat protein sequences, alignment-based approaches do not succeed in producing biologically plausible results. This is due to the nature of the alignment, which is based on the matching of subsequences in equivalent positions, while non-alignable proteins often have similar and conserved domains in non-equivalent positions. Second, the alignment-based approaches lead to similarity measures that depend heavily on the parameters set by the user for the alignment (e.g., gap penalties and substitution matrices). For easily alignable protein sequences, it's possible to supply a suitable combination of input parameters that allows such an approach to yield biologically plausible results. However, for difficult-to-align protein sequences, supplying different combinations of input parameters yields different results. Such variable results create ambiguities and complicate the similarity measurement task. To overcome these drawbacks, this paper describes a novel and effective approach for measuring the similarity between protein sequences, called SAF for Substitution and Alignment Free. Without resorting either to the alignment of protein sequences or to substitution relations between amino acids, SAF is able to efficiently detect the significant subsequences that best represent the intrinsic properties of protein sequences, those underlying the chronological dependencies of structural features and biochemical activities of protein sequences. Moreover, by using a new efficient subsequence matching scheme, SAF more efficiently handles protein sequences that contain similar structural features with significant meaning in chronologically non-equivalent positions. To show the effectiveness of SAF, extensive experiments were performed on protein datasets from different databases, and the results were compared with those obtained by several mainstream algorithms.

Keywords: Protein, Similarity, Substitution, Alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
1331 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure

Authors: S.Aranganayagi, K.Thangavel

Abstract:

Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.

Keywords: Clustering, Categorical, Incremental, Frequency, Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1330 A Combination of Similarity Ranking and Time for Social Research Paper Searching

Authors: P. Jomsri

Abstract:

Nowadays social media are important tools for web resource discovery. The performance and capabilities of web searches are vital, especially search results from social research paper bookmarking. This paper proposes a new algorithm for ranking method that is a combination of similarity ranking with paper posted time or CSTRank. The paper posted time is static ranking for improving search results. For this particular study, the paper posted time is combined with similarity ranking to produce a better ranking than other methods such as similarity ranking or SimRank. The retrieval performance of combination rankings is evaluated using mean values of NDCG. The evaluation in the experiments implies that the chosen CSTRank ranking by using weight score at ratio 90:10 can improve the efficiency of research paper searching on social bookmarking websites.

Keywords: combination ranking, information retrieval, time, similarity ranking, static ranking, weight score

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
1329 Impact of Similarity Ratings on Human Judgement

Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos

Abstract:

Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. In the study, 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests that the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.

Keywords: Ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
1328 Destination Port Detection for Vessels: An Analytic Tool for Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages Automatic Identification System (AIS) messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring AIS messages. Our RRo method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measures to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Frechet Distance (DFD), Dynamic Time ´ Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an f-measure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: Spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
1327 Graph-Based Text Similarity Measurement by Exploiting Wikipedia as Background Knowledge

Authors: Lu Zhang, Chunping Li, Jun Liu, Hui Wang

Abstract:

Text similarity measurement is a fundamental issue in many textual applications such as document clustering, classification, summarization and question answering. However, prevailing approaches based on Vector Space Model (VSM) more or less suffer from the limitation of Bag of Words (BOW), which ignores the semantic relationship among words. Enriching document representation with background knowledge from Wikipedia is proven to be an effective way to solve this problem, but most existing methods still cannot avoid similar flaws of BOW in a new vector space. In this paper, we propose a novel text similarity measurement which goes beyond VSM and can find semantic affinity between documents. Specifically, it is a unified graph model that exploits Wikipedia as background knowledge and synthesizes both document representation and similarity computation. The experimental results on two different datasets show that our approach significantly improves VSM-based methods in both text clustering and classification.

Keywords: Text classification, Text clustering, Text similarity, Wikipedia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
1326 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: Analogy-making, categorization, learning of categories, abstraction, hierarchical structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
1325 Comparative Analysis of Diversity and Similarity Indices with Special Relevance to Vegetations around Sewage Drains

Authors: Ekta Singh

Abstract:

Indices summarizing community structure are used to evaluate fundamental community ecology, species interaction, biogeographical factors, and environmental stress. Some of these indices are insensitive to gross community changes induced by contaminants of pollution. Diversity indices and similarity indices are reviewed considering their ecological application, both theoretical and practical. For some useful indices, empirical equations are given to calculate the expected maximum value of the indices to which the observed values can be related at any combination of sample sizes at the experimental sites. This paper examines the effects of sample size and diversity on the expected values of diversity indices and similarity indices, using various formulae. It has been shown that all indices are strongly affected by sample size and diversity. In some indices, this influence is greater than the others and an attempt has been made to deal with these influences.

Keywords: Biogeographical factors, Diversity Indices, Ecology and Similarity Indices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
1324 Investigation of Self-Similarity Solution for Wake Flow of a Cylinder

Authors: A. B. Khoshnevis, F. Zeydabadi, F. Sokhanvar

Abstract:

The data measurement of mean velocity has been taken for the wake of single circular cylinder with three different diameters for two different velocities. The effects of change in diameter and in velocity are studied in self-similar coordinate system. The spatial variations of velocity defect and that of the half-width have been investigated. The results are compared with those published by H.Schlichting. In the normalized coordinates, it is also observed that all cases except for the first station are self-similar. By attention to self-similarity profiles of mean velocity, it is observed for all the cases at the each station curves tend to zero at a same point.

Keywords: Self-similarity, wake of single circular cylinder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
1323 Necessary and Sufficient Condition for the Quaternion Vector Measure

Authors: Mei Li, Fahui Zhai

Abstract:

In this paper, the definitions of the quaternion measure and the quaternion vector measure are introduced. The relation between the quaternion measure and the complex vector measure as well as the relation between the quaternion linear functional and the complex linear functional are discussed respectively. By using these relations, the necessary and sufficient condition to determine the quaternion vector measure is given.

Keywords: Quaternion, Quaternion measure, Quaternion vector measure, Quaternion Banach space, Quaternion linear functional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
1322 Map Matching Performance under Various Similarity Metrics for Heterogeneous Robot Teams

Authors: M. C. Akay, A. Aybakan, H. Temeltas

Abstract:

Aerial and ground robots have various advantages of usage in different missions. Aerial robots can move quickly and get a different sight of view of the area, but those vehicles cannot carry heavy payloads. On the other hand, unmanned ground vehicles (UGVs) are slow moving vehicles, since those can carry heavier payloads than unmanned aerial vehicles (UAVs). In this context, we investigate the performances of various Similarity Metrics to provide a common map for Heterogeneous Robot Team (HRT) in complex environments. Within the usage of Lidar Odometry and Octree Mapping technique, the local 3D maps of the environment are gathered.  In order to obtain a common map for HRT, informative theoretic similarity metrics are exploited. All types of these similarity metrics gave adequate as allowable simulation time and accurate results that can be used in different types of applications. For the heterogeneous multi robot team, those methods can be used to match different types of maps.

Keywords: Common maps, heterogeneous robot team, map matching, informative theoretic similarity metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
1321 A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer

Authors: Frank Emmert Streib, Matthias Dehmer, Jing Liu, Max Mühlhauser

Abstract:

In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Keywords: Graph similarity, DNA microarray data, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1320 Measuring Teachers- Beliefs about Mathematics: A Fuzzy Set Approach

Authors: M.A. Lazim, M.T.Abu Osman

Abstract:

This paper deals with the application of a fuzzy set in measuring teachers- beliefs about mathematics. The vagueness of beliefs was transformed into standard mathematical values using a fuzzy preferences model. The study employed a fuzzy approach questionnaire which consists of six attributes for measuring mathematics teachers- beliefs about mathematics. The fuzzy conjoint analysis approach based on fuzzy set theory was used to analyze the data from twenty three mathematics teachers from four secondary schools in Terengganu, Malaysia. Teachers- beliefs were recorded in form of degrees of similarity and its levels of agreement. The attribute 'Drills and practice is one of the best ways of learning mathematics' scored the highest degree of similarity at 0. 79860 with level of 'strongly agree'. The results showed that the teachers- beliefs about mathematics were varied. This is shown by different levels of agreement and degrees of similarity of the measured attributes.

Keywords: belief, membership function, degree of similarity, conjoint analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
1319 Protein-Protein Interaction Detection Based on Substring Sensitivity Measure

Authors: Nazar Zaki, Safaai Deris, Hany Alashwal

Abstract:

Detecting protein-protein interactions is a central problem in computational biology and aberrant such interactions may have implicated in a number of neurological disorders. As a result, the prediction of protein-protein interactions has recently received considerable attention from biologist around the globe. Computational tools that are capable of effectively identifying protein-protein interactions are much needed. In this paper, we propose a method to detect protein-protein interaction based on substring similarity measure. Two protein sequences may interact by the mean of the similarities of the substrings they contain. When applied on the currently available protein-protein interaction data for the yeast Saccharomyces cerevisiae, the proposed method delivered reasonable improvement over the existing ones.

Keywords: Protein-Protein Interaction, support vector machine, feature extraction, pairwise alignment, Smith-Waterman score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1318 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.

Keywords: Missing values, distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
1317 3D CAD Models and its Feature Similarity

Authors: Elmi Abu Bakar, Tetsuo Miyake, Zhong Zhang, Takashi Imamura

Abstract:

Knowing the geometrical object pose of products in manufacturing line before robot manipulation is required and less time consuming for overall shape measurement. In order to perform it, the information of shape representation and matching of objects is become required. Objects are compared with its descriptor that conceptually subtracted from each other to form scalar metric. When the metric value is smaller, the object is considered closed to each other. Rotating the object from static pose in some direction introduce the change of value in scalar metric value of boundary information after feature extraction of related object. In this paper, a proposal method for indexing technique for retrieval of 3D geometrical models based on similarity between boundaries shapes in order to measure 3D CAD object pose using object shape feature matching for Computer Aided Testing (CAT) system in production line is proposed. In experimental results shows the effectiveness of proposed method.

Keywords: CAD, rendering, feature extraction, feature classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
1316 Similarity Detection in Collaborative Development of Object-Oriented Formal Specifications

Authors: Fathi Taibi, Fouad Mohammed Abbou, Md. Jahangir Alam

Abstract:

The complexity of today-s software systems makes collaborative development necessary to accomplish tasks. Frameworks are necessary to allow developers perform their tasks independently yet collaboratively. Similarity detection is one of the major issues to consider when developing such frameworks. It allows developers to mine existing repositories when developing their own views of a software artifact, and it is necessary for identifying the correspondences between the views to allow merging them and checking their consistency. Due to the importance of the requirements specification stage in software development, this paper proposes a framework for collaborative development of Object- Oriented formal specifications along with a similarity detection approach to support the creation, merging and consistency checking of specifications. The paper also explores the impact of using additional concepts on improving the matching results. Finally, the proposed approach is empirically evaluated.

Keywords: Collaborative Development, Formal methods, Object-Oriented, Similarity detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1315 Flocking Behaviors for Multiple Groups with Heterogeneous Agents

Authors: Jae Moon Lee

Abstract:

Most of researches for conventional simulations were studied focusing on flocks with a single species. While there exist the flocking behaviors with a single species in nature, the flocking behaviors are frequently observed with multi-species. This paper studies on the flocking simulation for heterogeneous agents. In order to simulate the flocks for heterogeneous agents, the conventional method uses the identifier of flock, while the proposed method defines the feature vector of agent and uses the similarity between agents by comparing with those feature vectors. Based on the similarity, the paper proposed the attractive force and repulsive force and then executed the simulation by applying two forces. The results of simulation showed that flock formation with heterogeneous agents is very natural in both cases. In addition, it showed that unlike the existing method, the proposed method can not only control the density of the flocks, but also be possible for two different groups of agents to flock close to each other if they have a high similarity.

Keywords: Flocking behavior, heterogeneous agents, similarity, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1314 A Relational Case-Based Reasoning Framework for Project Delivery System Selection

Authors: Yang Cui, Yong Qiang Chen

Abstract:

An appropriate project delivery system (PDS) is crucial to the success of a construction projects. Case-based Reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the Relational Case-based Reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.

Keywords: Relational Cased-based Reasoning, Case-based Reasoning, Project delivery system, Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
1313 A Distance Function for Data with Missing Values and Its Application

Authors: Loai AbdAllah, Ilan Shimshoni

Abstract:

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Keywords: Missing values, Distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
1312 Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach

Authors: Shih-Yi Chao

Abstract:

The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.

Keywords: Clique detection, labeled vertices, RNA secondary structures, subgraph, similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1311 Minimal Spanning Tree based Fuzzy Clustering

Authors: Ágnes Vathy-Fogarassy, Balázs Feil, János Abonyi

Abstract:

Most of fuzzy clustering algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. This paper studies the synergistic combination of the hierarchical and graph theoretic minimal spanning tree based clustering algorithm with the partitional Gath-Geva fuzzy clustering algorithm. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. For the analysis of the resulted fuzzy clusters a new fuzzy similarity measure based tool has been presented. The calculated similarities of the clusters can be used for the hierarchical clustering of the resulted fuzzy clusters, which information is useful for cluster merging and for the visualization of the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the classical Gath-Geva fuzzy clustering algorithm.

Keywords: Clustering, fuzzy clustering, minimal spanning tree, cluster validity, fuzzy similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
1310 Clustering Protein Sequences with Tailored General Regression Model Technique

Authors: G. Lavanya Devi, Allam Appa Rao, A. Damodaram, GR Sridhar, G. Jaya Suma

Abstract:

Cluster analysis divides data into groups that are meaningful, useful, or both. Analysis of biological data is creating a new generation of epidemiologic, prognostic, diagnostic and treatment modalities. Clustering of protein sequences is one of the current research topics in the field of computer science. Linear relation is valuable in rule discovery for a given data, such as if value X goes up 1, value Y will go down 3", etc. The classical linear regression models the linear relation of two sequences perfectly. However, if we need to cluster a large repository of protein sequences into groups where sequences have strong linear relationship with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we propose a new technique named General Regression Model Technique Clustering Algorithm (GRMTCA) to benignly handle the problem of linear sequences clustering. GRMT gives a measure, GR*, to tell the degree of linearity of multiple sequences without having to compare each pair of them.

Keywords: Clustering, General Regression Model, Protein Sequences, Similarity Measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1309 Sequence Relationships Similarity of Swine Influenza a (H1N1) Virus

Authors: Patsaraporn Somboonsak, Mud-Armeen Munlin

Abstract:

In April 2009, a new variant of Influenza A virus subtype H1N1 emerged in Mexico and spread all over the world. The influenza has three subtypes in human (H1N1, H1N2 and H3N2) Types B and C influenza tend to be associated with local or regional epidemics. Preliminary genetic characterization of the influenza viruses has identified them as swine influenza A (H1N1) viruses. Nucleotide sequence analysis of the Haemagglutinin (HA) and Neuraminidase (NA) are similar to each other and the majority of their genes of swine influenza viruses, two genes coding for the neuraminidase (NA) and matrix (M) proteins are similar to corresponding genes of swine influenza. Sequence similarity between the 2009 A (H1N1) virus and its nearest relatives indicates that its gene segments have been circulating undetected for an extended period. Nucleic acid sequence Maximum Likelihood (MCL) and DNA Empirical base frequencies, Phylogenetic relationship amongst the HA genes of H1N1 virus isolated in Genbank having high nucleotide sequence homology. In this paper we used 16 HA nucleotide sequences from NCBI for computing sequence relationships similarity of swine influenza A virus using the following method MCL the result is 28%, 36.64% for Optimal tree with the sum of branch length, 35.62% for Interior branch phylogeny Neighber – Join Tree, 1.85% for the overall transition/transversion, and 8.28% for Overall mean distance.

Keywords: Sequence DNA, Relationship of swine, Swineinfluenza, Sequence Similarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
1308 Robust Face Recognition using AAM and Gabor Features

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seoungseon Jeon, Jaemin Kim, Seongwon Cho

Abstract:

In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM.

Keywords: Face Recognition, AAM, Gabor features, EBGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208