Search results for: Real-time recognition of the ground shape.
2156 Research and Development of a Biomorphic Robot Driven by Shape Memory Alloys
Authors: Y.J. Lai, H.Y. Peng, M.W. Wu, J. Shaw
Abstract:
In this study, we used shape memory alloys as actuators to build a biomorphic robot which can imitate the motion of an earthworm. The robot can be used to explore in a narrow space. Therefore we chose shape memory alloys as actuators. Because of the small deformation of a wire shape memory alloy, spiral shape memory alloys are selected and installed both on the X axis and Y axis (each axis having two shape memory alloys) to enable the biomorphic robot to do reciprocating motion. By the mechanism we designed, the robot can increase the distance as it moves in a duty cycle. In addition, two shape memory alloys are added to the robot head for controlling right and left turns. By sending pulses through the I/O card from the controller, the signals are then amplified by a driver to heat the shape memory alloys in order to make the SMA shrink to pull the mechanism to move.Keywords: Biomorphic Robot, Shape Memory Alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16542155 Control Chart Pattern Recognition Using Wavelet Based Neural Networks
Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim
Abstract:
Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.
Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24802154 Vehicle Velocity Estimation for Traffic Surveillance System
Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain
Abstract:
This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.
Keywords: camera calibration, object tracking, velocity estimation, video image processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44562153 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime
Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27802152 Enhancement of Shape Description and Representation by Slope
Authors: Ali Salem Bin Samma, Rosalina Abdul Salam
Abstract:
Representation and description of object shapes by the slopes of their contours or borders are proposed. The idea is to capture the essence of the features that make it easier for a shape to be stored, transmitted, compared and recognized. These features must be independent of translation, rotation and scaling of the shape. A approach is proposed to obtain high performance, efficiency and to merge the boundaries into sequence of straight line segments with the fewest possible segments. Evaluation on the performance of the proposed method is based on its comparison with established method of object shape description.Keywords: Shape description, Shape representation and Slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14562151 Integrating Low and High Level Object Recognition Steps
Authors: András Barta, István Vajk
Abstract:
In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.Keywords: Object recognition, Bayesian network, Wavelets, Document processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14852150 Integrating Low and High Level Object Recognition Steps by Probabilistic Networks
Authors: András Barta, István Vajk
Abstract:
In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.
Keywords: Object recognition, Bayesian network, Wavelets, Document processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16712149 View-Point Insensitive Human Pose Recognition using Neural Network
Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung
Abstract:
This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.Keywords: Computer vision, neural network, pose recognition, view-point insensitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13282148 Practical Aspects of Face Recognition
Authors: S. Vural, H. Yamauchi
Abstract:
Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15982147 Automatic Feature Recognition for GPR Image Processing
Authors: Yi-an Cui, Lu Wang, Jian-ping Xiao
Abstract:
This paper presents an automatic feature recognition method based on center-surround difference detecting and fuzzy logic that can be applied in ground-penetrating radar (GPR) image processing. Adopted center-surround difference method, the salient local image regions are extracted from the GPR images as features of detected objects. And fuzzy logic strategy is used to match the detected features and features in template database. This way, the problem of objects detecting, which is the key problem in GPR image processing, can be converted into two steps, feature extracting and matching. The contributions of these skills make the system have the ability to deal with changes in scale, antenna and noises. The results of experiments also prove that the system has higher ratio of features sensing in using GPR to image the subsurface structures.Keywords: feature recognition, GPR image, matching strategy, salient image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22822146 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM
Authors: Mehdi Ghayoumi
Abstract:
We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.Keywords: lda, adaptive, svm, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14222145 Recognition-based Segmentation in Persian Character Recognition
Authors: Mohsen Zand, Ahmadreza Naghsh Nilchi, S. Amirhassan Monadjemi
Abstract:
Optical character recognition of cursive scripts presents a number of challenging problems in both segmentation and recognition processes in different languages, including Persian. In order to overcome these problems, we use a newly developed Persian word segmentation method and a recognition-based segmentation technique to overcome its segmentation problems. This method is robust as well as flexible. It also increases the system-s tolerances to font variations. The implementation results of this method on a comprehensive database show a high degree of accuracy which meets the requirements for commercial use. Extended with a suitable pre and post-processing, the method offers a simple and fast framework to develop a full OCR system.Keywords: OCR, Persian, Recognition, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18402144 Numerical Simulation of the Transient Shape Variation of a Rotating Liquid Droplet
Authors: Tadashi Watanabe
Abstract:
Transient shape variation of a rotating liquid dropletis simulated numerically. The three dimensional Navier-Stokes equations were solved by using the level set method. The shape variation from the sphere to the rotating ellipsoid, and to the two-robed shapeare simulated, and the elongation of the two-robed droplet is discussed. The two-robed shape after the initial transient is found to be stable and the elongation is almost the same for the cases with different initial rotation rate. The relationship between the elongation and the rotation rate is obtained by averaging the transient shape variation. It is shown that the elongation of two-robed shape is in good agreement with the existing experimental data. It is found that the transient numerical simulation is necessary for analyzing the largely elongated two-robed shape of rotating droplet.
Keywords: Droplet, rotation, two-robed shape, transient simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16932143 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System
Abstract:
Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.Keywords: Ubiquitous architecture, verification, Identification, recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13362142 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy
Authors: Mohamed Omar
Abstract:
Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18452141 Offline Handwritten Signature Recognition
Authors: Gulzar A. Khuwaja, Mohammad S. Laghari
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. Signature verification systems can be categorized as offline (static) and online (dynamic). This paper presents a neural network based recognition of offline handwritten signatures system that is trained with low-resolution scanned signature images.Keywords: Pattern Recognition, Computer Vision, AdaptiveClassification, Handwritten Signature Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29032140 A New Approach to Face Recognition Using Dual Dimension Reduction
Authors: M. Almas Anjum, M. Younus Javed, A. Basit
Abstract:
In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.Keywords: Biometrics, DCT, Face Recognition, Illumination, Computation, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16862139 Aerodynamics and Optimization of Airfoil Under Ground Effect
Authors: Kyoungwoo Park, Byeong Sam Kim, Juhee Lee, Kwang Soo Kim
Abstract:
The Prediction of aerodynamic characteristics and shape optimization of airfoil under the ground effect have been carried out by integration of computational fluid dynamics and the multiobjective Pareto-based genetic algorithm. The main flow characteristics around an airfoil of WIG craft are lift force, lift-to-drag ratio and static height stability (H.S). However, they show a strong trade-off phenomenon so that it is not easy to satisfy the design requirements simultaneously. This difficulty can be resolved by the optimal design. The above mentioned three characteristics are chosen as the objective functions and NACA0015 airfoil is considered as a baseline model in the present study. The profile of airfoil is constructed by Bezier curves with fourteen control points and these control points are adopted as the design variables. For multi-objective optimization problems, the optimal solutions are not unique but a set of non-dominated optima and they are called Pareto frontiers or Pareto sets. As the results of optimization, forty numbers of non- dominated Pareto optima can be obtained at thirty evolutions.Keywords: Aerodynamics, Shape optimization, Airfoil on WIGcraft, Genetic algorithm, Computational fluid dynamics (CFD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32292138 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.
Keywords: Pedestrian detection, color segmentation, false positives, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11442137 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features
Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova
Abstract:
The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.
Keywords: Emotion recognition, facial recognition, signal processing, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20182136 A Novel Approach to Persian Online Hand Writing Recognition
Authors: Ramin Halavati, Mansour Jamzad, Mahdieh Soleymani
Abstract:
Persian (Farsi) script is totally cursive and each character is written in several different forms depending on its former and later characters in the word. These complexities make automatic handwriting recognition of Persian a very hard problem and there are few contributions trying to work it out. This paper presents a novel practical approach to online recognition of Persian handwriting which is based on representation of inputs and patterns with very simple visual features and comparison of these simple terms. This recognition approach is tested over a set of Persian words and the results have been quite acceptable when the possible words where unknown and they were almost all correct in cases that the words where chosen from a prespecified list.
Keywords: Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13302135 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of shape-memory products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: Elastic deformation, heating, shape-memory polymers, stress-strain behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17692134 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks
Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi
Abstract:
This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.
Keywords: Signature Recognition, Artificial Neural Network, Angle Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24952133 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control
Authors: Van Nhan Nguyen, Harald Holone
Abstract:
Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.Keywords: Automatic Speech Recognition, ASR, Air Traffic Control, ATC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40422132 Analysis of Combined Use of NN and MFCC for Speech Recognition
Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam
Abstract:
The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.
Keywords: Speech Recognition, MFCC, Neural Network, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32682131 Investigation of Combined use of MFCC and LPC Features in Speech Recognition Systems
Authors: К. R. Aida–Zade, C. Ardil, S. S. Rustamov
Abstract:
Statement of the automatic speech recognition problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determination algorithms of Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC) coefficients expressing the basic speech features are developed. Combined use of cepstrals of MFCC and LPC in speech recognition system is suggested to improve the reliability of speech recognition system. To this end, the recognition system is divided into MFCC and LPC-based recognition subsystems. The training and recognition processes are realized in both subsystems separately, and recognition system gets the decision being the same results of each subsystems. This results in decrease of error rate during recognition. The training and recognition processes are realized by artificial neural networks in the automatic speech recognition system. The neural networks are trained by the conjugate gradient method. In the paper the problems observed by the number of speech features at training the neural networks of MFCC and LPC-based speech recognition subsystems are investigated. The variety of results of neural networks trained from different initial points in training process is analyzed. Methodology of combined use of neural networks trained from different initial points in speech recognition system is suggested to improve the reliability of recognition system and increase the recognition quality, and obtained practical results are shown.Keywords: Speech recognition, cepstral analysis, Voice activation detection algorithm, Mel Frequency Cepstral Coefficients, features of speech, Cepstral Mean Subtraction, neural networks, Linear Predictive Coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9132130 Infrared Face Recognition Using Distance Transforms
Authors: Moulay A. Akhloufi, Abdelhakim Bendada
Abstract:
In this work we present an efficient approach for face recognition in the infrared spectrum. In the proposed approach physiological features are extracted from thermal images in order to build a unique thermal faceprint. Then, a distance transform is used to get an invariant representation for face recognition. The obtained physiological features are related to the distribution of blood vessels under the face skin. This blood network is unique to each individual and can be used in infrared face recognition. The obtained results are promising and show the effectiveness of the proposed scheme.Keywords: Face recognition, biometrics, infrared imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14232129 Gait Recognition System: Bundle Rectangle Approach
Authors: Edward Guillen, Daniel Padilla, Adriana Hernandez, Kenneth Barner
Abstract:
Biometrics methods include recognition techniques such as fingerprint, iris, hand geometry, voice, face, ears and gait. The gait recognition approach has some advantages, for example it does not need the prior concern of the observed subject and it can record many biometric features in order to make deeper analysis, but most of the research proposals use high computational cost. This paper shows a gait recognition system with feature subtraction on a bundle rectangle drawn over the observed person. Statistical results within a database of 500 videos are shown.Keywords: Autentication, Biometrics, Gait Recognition, Human Identification, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18772128 Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement
Authors: Gheida J. Shahrour, Martin J. Russell
Abstract:
The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that intersubject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.
Keywords: Person Recognition, Topic Recognition, Culture Recognition, 3D Body Movement Signals, Variability Compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21742127 Study on the Seismic Response of Slope under Pulse-Like Ground Motion
Authors: Peter Antwi Buah, Yingbin Zhang, Jianxian He, Chenlin Xiang, Delali Atsu Y. Bakah
Abstract:
Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is well known to be stronger than the single pulse. This research has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a stronger dynamic response.
Keywords: Velocity pulses, dynamic response, PGV magnification effect, elevation effect, double pulse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435