Search results for: Priority Based Decisive Algorithm (PBD)
13012 ECG Analysis using Nature Inspired Algorithm
Authors: A.Sankara Subramanian, G.Gurusamy, G.Selvakumar, P.Gnanasekar, A.Nagappan
Abstract:
This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.Keywords: Daubechies 4 Wavelet, ECG, Nature inspired algorithm, Ventricular Arrhythmias, Wavelet Decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230913011 Optimization of Supersonic Ejector via Sequence-Adapted Micro-Genetic Algorithm
Authors: Kolar Jan, Dvorak Vaclav
Abstract:
In this study, an optimization of supersonic air-to-air ejector is carried out by a recently developed single-objective genetic algorithm based on adaption of sequence of individuals. Adaptation of sequence is based on Shape-based distance of individuals and embedded micro-genetic algorithm. The optimal sequence found defines the succession of CFD-aimed objective calculation within each generation of regular micro-genetic algorithm. A spring-based deformation mutates the computational grid starting the initial individualvia adapted population in the optimized sequence. Selection of a generation initial individual is knowledge-based. A direct comparison of the newly defined and standard micro-genetic algorithm is carried out for supersonic air-to-air ejector. The only objective is to minimize the loose of total stagnation pressure in the ejector. The result is that sequence-adopted micro-genetic algorithm can provide comparative results to standard algorithm but in significantly lower number of overall CFD iteration steps.
Keywords: Grid deformation, Micro-genetic algorithm, shapebased sequence, supersonic ejector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156413010 Efficient Realization of an ADFE with a New Adaptive Algorithm
Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil
Abstract:
Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167713009 Satellite Beam Handoff Detection Algorithm Based On RCST Mobility Information
Authors: Ji Nyong Jang, Min Woo Lee, Eun Kyung Kim, Ki Keun Kim, Jae Sung Lim
Abstract:
Since DVB-RCS has been successively implemented, the mobile communication on the multi-beam satellite communication is attractive attention. And the DVB-RCS standard sets up to support mobility of a RCST. In the case of the spot-beam satellite system, the received signal strength does not differ largely between the center and the boundary of the beam. Thus, the RSS based handoff detection algorithm is not benefit to the satellite system as a terrestrial system. Therefore we propose an Adaptive handoff detection algorithm based on RCST mobility information. Our handoff detection algorithm not only can be used as centralized handoff detection algorithm but also removes uncertainties of handoff due to the variation of RSS. Performances were compared with RSS based handoff algorithm. Simulation results show that the proposed handoff detection algorithm not only achieved better handoff and link degradation rate, but also achieved better forward link spectral efficiency.
Keywords: DVB-RCS, satellite multi-beam handoff, mobility information, handover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171213008 Flexible Wormhole-Switched Network-on-chip with Two-Level Priority Data Delivery Service
Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner
Abstract:
A synchronous network-on-chip using wormhole packet switching and supporting guaranteed-completion best-effort with low-priority (LP) and high-priority (HP) wormhole packet delivery service is presented in this paper. Both our proposed LP and HP message services deliver a good quality of service in term of lossless packet completion and in-order message data delivery. However, the LP message service does not guarantee minimal completion bound. The HP packets will absolutely use 100% bandwidth of their reserved links if the HP packets are injected from the source node with maximum injection. Hence, the service are suitable for small size messages (less than hundred bytes). Otherwise the other HP and LP messages, which require also the links, will experience relatively high latency depending on the size of the HP message. The LP packets are routed using a minimal adaptive routing, while the HP packets are routed using a non-minimal adaptive routing algorithm. Therefore, an additional 3-bit field, identifying the packet type, is introduced in their packet headers to classify and to determine the type of service committed to the packet. Our NoC prototypes have been also synthesized using a 180-nm CMOS standard-cell technology to evaluate the cost of implementing the combination of both services.Keywords: Network-on-Chip, Parallel Pipeline Router Architecture, Wormhole Switching, Two-Level Priority Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176613007 A Hybrid Feature Subset Selection Approach based on SVM and Binary ACO. Application to Industrial Diagnosis
Authors: O. Kadri, M. D. Mouss, L.H. Mouss, F. Merah
Abstract:
This paper proposes a novel hybrid algorithm for feature selection based on a binary ant colony and SVM. The final subset selection is attained through the elimination of the features that produce noise or, are strictly correlated with other already selected features. Our algorithm can improve classification accuracy with a small and appropriate feature subset. Proposed algorithm is easily implemented and because of use of a simple filter in that, its computational complexity is very low. The performance of the proposed algorithm is evaluated through a real Rotary Cement kiln dataset. The results show that our algorithm outperforms existing algorithms.
Keywords: Binary Ant Colony algorithm, Support VectorMachine, feature selection, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160813006 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163713005 A Constrained Clustering Algorithm for the Classification of Industrial Ores
Authors: Luciano Nieddu, Giuseppe Manfredi
Abstract:
In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures the information on the closed two-dimensional contour of an image, on images of industrial mineral ores.Keywords: K-means, Industrial ores classification, Invariant Features, Supervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138113004 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices
Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues
Abstract:
This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.
Keywords: Matrix Minimization Algorithm, Decoding Sequential Search Algorithm, image compression, Discrete Cosine Transform, Discrete Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24713003 A New Algorithm for Cluster Initialization
Authors: Moth'd Belal. Al-Daoud
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the k-means algorithm. Solutions obtained from this technique are dependent on the initialization of cluster centers. In this article we propose a new algorithm to initialize the clusters. The proposed algorithm is based on finding a set of medians extracted from a dimension with maximum variance. The algorithm has been applied to different data sets and good results are obtained.
Keywords: clustering, k-means, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210313002 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search (BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improving the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes’ overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads.We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.
Keywords: Breadth-first search, BFS, graph ordering, graph algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63313001 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm
Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa
Abstract:
The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.
Keywords: Tag cloud, font distribution algorithm, frequency-based, content-based, power law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209313000 An Innovative Fuzzy Decision Making Based Genetic Algorithm
Authors: M. A. Sharbafi, M. Shakiba Herfeh, Caro Lucas, A. Mohammadi Nejad
Abstract:
Several researchers have proposed methods about combination of Genetic Algorithm (GA) and Fuzzy Logic (the use of GA to obtain fuzzy rules and application of fuzzy logic in optimization of GA). In this paper, we suggest a new method in which fuzzy decision making is used to improve the performance of genetic algorithm. In the suggested method, we determine the alleles that enhance the fitness of chromosomes and try to insert them to the next generation. In this algorithm we try to present an innovative vaccination in the process of reproduction in genetic algorithm, with considering the trade off between exploration and exploitation.Keywords: Genetic Algorithm, Fuzzy Decision Making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160812999 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.
Keywords: Radial basis function network, Hybrid learning, Multi-objective optimization, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225312998 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection
Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu
Abstract:
Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.Keywords: detection, intersection, mixed traffic, moving objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203312997 The Simulation and Realization of Input-Buffer Scheduling Algorithm in Satellite Switching System
Authors: Yi Zhang, Quan Zhou, Jun Li, Yanlang Hu
Abstract:
Scheduling algorithm is a key technology in satellite switching system with input-buffer. In this paper, a new scheduling algorithm and its realization are proposed. Based on Crossbar switching fabric, the algorithm adopts serial scheduling strategy and adjusts the output port arbitrating strategy for the better equity of every port. Consequently, it increases the matching probability. The algorithm can greatly reduce the scheduling delay and cell loss rate. The analysis and simulation results by OPNET show that the proposed algorithm has the better performance than others in average delay and cell loss rate, and has the equivalent complexity. On the basis of these results, the hardware realization and simulation based on FPGA are completed, which validate the feasibility of the new scheduling algorithm.
Keywords: Scheduling algorithm, input-buffer, serial scheduling, hardware design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147512996 An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem
Authors: Bin Cai, Shilong Wang, Haibo Hu
Abstract:
The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.
Keywords: Genetic algorithm, Job shop scheduling problem, Local search, Meta-heuristic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165212995 Range-Free Localization Schemes for Wireless Sensor Networks
Authors: R. Khadim, M. Erritali, A. Maaden
Abstract:
Localization of nodes is one of the key issues of Wireless Sensor Network (WSN) that gained a wide attention in recent years. The existing localization techniques can be generally categorized into two types: range-based and range-free. Compared with rang-based schemes, the range-free schemes are more costeffective, because no additional ranging devices are needed. As a result, we focus our research on the range-free schemes. In this paper we study three types of range-free location algorithms to compare the localization error and energy consumption of each one. Centroid algorithm requires a normal node has at least three neighbor anchors, while DV-hop algorithm doesn’t have this requirement. The third studied algorithm is the amorphous algorithm similar to DV-Hop algorithm, and the idea is to calculate the hop distance between two nodes instead of the linear distance between them. The simulation results show that the localization accuracy of the amorphous algorithm is higher than that of other algorithms and the energy consumption does not increase too much.Keywords: Wireless Sensor Networks, Node Localization, Centroid Algorithm, DV–Hop Algorithm, Amorphous Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263112994 A Optimal Subclass Detection Method for Credit Scoring
Authors: Luciano Nieddu, Giuseppe Manfredi, Salvatore D'Acunto, Katia La Regina
Abstract:
In this paper a non-parametric statistical pattern recognition algorithm for the problem of credit scoring will be presented. The proposed algorithm is based on a clustering k- means algorithm and allows for the determination of subclasses of homogenous elements in the data. The algorithm will be tested on two benchmark datasets and its performance compared with other well known pattern recognition algorithm for credit scoring.
Keywords: Constrained clustering, Credit scoring, Statistical pattern recognition, Supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204912993 Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering
Authors: Farhad Hadinejad, Hasan Saberi, Saeed Kazem
Abstract:
Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.
Keywords: Grid–based clustering, SVC, Density function, Radial basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174412992 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227712991 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188012990 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous
Authors: Insung Jung, Gi-Nam Wang
Abstract:
In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183712989 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131512988 Adaptive Fuzzy Control on EDF Scheduling
Authors: Xiangbin Zhu
Abstract:
EDF (Early Deadline First) algorithm is a very important scheduling algorithm for real- time systems . The EDF algorithm assigns priorities to each job according to their absolute deadlines and has good performance when the real-time system is not overloaded. When the real-time system is overloaded, many misdeadlines will be produced. But these misdeadlines are not uniformly distributed, which usually focus on some tasks. In this paper, we present an adaptive fuzzy control scheduling based on EDF algorithm. The improved algorithm can have a rectangular distribution of misdeadline ratios among all real-time tasks when the system is overloaded. To evaluate the effectiveness of the improved algorithm, we have done extensive simulation studies. The simulation results show that the new algorithm is superior to the old algorithm.
Keywords: Fuzzy control, real-time systems, EDF, misdeadline ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149412987 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy
Authors: Yongzhong Wu, Ping Ji
Abstract:
This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274712986 A New Block-based NLMS Algorithm and Its Realization in Block Floating Point Format
Authors: Abhijit Mitra
Abstract:
we propose a new normalized LMS (NLMS) algorithm, which gives satisfactory performance in certain applications in comaprison with con-ventional NLMS recursion. This new algorithm can be treated as a block based simplification of NLMS algorithm with significantly reduced number of multi¬ply and accumulate as well as division operations. It is also shown that such a recursion can be easily implemented in block floating point (BFP) arithmetic, treating the implementational issues much efficiently. In particular, the core challenges of a BFP realization to such adaptive filters are mainly considered in this regard. A global upper bound on the step size control parameter of the new algorithm due to BFP implementation is also proposed to prevent overflow in filtering as well as weight updating operations jointly.
Keywords: Adaptive algorithm, Block floating point arithmetic, Implementation issues, Normalized least mean square methods
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236412985 GPU-Based Volume Rendering for Medical Imagery
Authors: Hadjira Bentoumi, Pascal Gautron, Kadi Bouatouch
Abstract:
We present a method for fast volume rendering using graphics hardware (GPU). To our knowledge, it is the first implementation on the GPU. Based on the Shear-Warp algorithm, our GPU-based method provides real-time frame rates and outperforms the CPU-based implementation. When the number of slices is not sufficient, we add in-between slices computed by interpolation. This improves then the quality of the rendered images. We have also implemented the ray marching algorithm on the GPU. The results generated by the three algorithms (CPU-based and GPU-based Shear- Warp, GPU-based Ray Marching) for two test models has proved that the ray marching algorithm outperforms the shear-warp methods in terms of speed up and image quality.Keywords: Volume rendering, graphics processors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185412984 Neural Network Learning Based on Chaos
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.
Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178012983 Improvement over DV-Hop Localization Algorithm for Wireless Sensor Networks
Authors: Shrawan Kumar, D. K. Lobiyal
Abstract:
In this paper, we propose improved versions of DVHop algorithm as QDV-Hop algorithm and UDV-Hop algorithm for better localization without the need for additional range measurement hardware. The proposed algorithm focuses on third step of DV-Hop, first error terms from estimated distances between unknown node and anchor nodes is separated and then minimized. In the QDV-Hop algorithm, quadratic programming is used to minimize the error to obtain better localization. However, quadratic programming requires a special optimization tool box that increases computational complexity. On the other hand, UDV-Hop algorithm achieves localization accuracy similar to that of QDV-Hop by solving unconstrained optimization problem that results in solving a system of linear equations without much increase in computational complexity. Simulation results show that the performance of our proposed schemes (QDV-Hop and UDV-Hop) is superior to DV-Hop and DV-Hop based algorithms in all considered scenarios.Keywords: Wireless sensor networks, Error term, DV-Hop algorithm, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265