Search results for: structured data
7123 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.
Keywords: Classification, fuzzy logic, tolerance relations, rainfall data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10257122 Granularity Analysis for Spatio-Temporal Web Sensors
Authors: Shun Hattori
Abstract:
In recent years, many researches to mine the exploding Web world, especially User Generated Content (UGC) such as weblogs, for knowledge about various phenomena and events in the physical world have been done actively, and also Web services with the Web-mined knowledge have begun to be developed for the public. However, there are few detailed investigations on how accurately Web-mined data reflect physical-world data. It must be problematic to idolatrously utilize the Web-mined data in public Web services without ensuring their accuracy sufficiently. Therefore, this paper introduces the simplest Web Sensor and spatiotemporallynormalized Web Sensor to extract spatiotemporal data about a target phenomenon from weblogs searched by keyword(s) representing the target phenomenon, and tries to validate the potential and reliability of the Web-sensed spatiotemporal data by four kinds of granularity analyses of coefficient correlation with temperature, rainfall, snowfall, and earthquake statistics per day by region of Japan Meteorological Agency as physical-world data: spatial granularity (region-s population density), temporal granularity (time period, e.g., per day vs. per week), representation granularity (e.g., “rain" vs. “heavy rain"), and media granularity (weblogs vs. microblogs such as Tweets).Keywords: Granularity analysis, knowledge extraction, spatiotemporal data mining, Web credibility, Web mining, Web sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18817121 Non-negative Principal Component Analysis for Face Recognition
Abstract:
Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16947120 Concurrent Approach to Data Parallel Model using Java
Authors: Bala Dhandayuthapani Veerasamy
Abstract:
Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20967119 Adjusted Ratio and Regression Type Estimators for Estimation of Population Mean when some Observations are missing
Authors: Nuanpan Nangsue
Abstract:
Ratio and regression type estimators have been used by previous authors to estimate a population mean for the principal variable from samples in which both auxiliary x and principal y variable data are available. However, missing data are a common problem in statistical analyses with real data. Ratio and regression type estimators have also been used for imputing values of missing y data. In this paper, six new ratio and regression type estimators are proposed for imputing values for any missing y data and estimating a population mean for y from samples with missing x and/or y data. A simulation study has been conducted to compare the six ratio and regression type estimators with a previous estimator of Rueda. Two population sizes N = 1,000 and 5,000 have been considered with sample sizes of 10% and 30% and with correlation coefficients between population variables X and Y of 0.5 and 0.8. In the simulations, 10 and 40 percent of sample y values and 10 and 40 percent of sample x values were randomly designated as missing. The new ratio and regression type estimators give similar mean absolute percentage errors that are smaller than the Rueda estimator for all cases. The new estimators give a large reduction in errors for the case of 40% missing y values and sampling fraction of 30%.
Keywords: Auxiliary variable, missing data, ratio and regression type estimators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17317118 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15767117 Motivating Factors and Prospects for Rural Community Involvement in Entrepreneurship: Evidence from Mantanani Island, Sabah, Malaysia
Authors: F. Fabeil Noor, Roslinah Mahmud, Janice L. H. Nga, Rasid Mail
Abstract:
In Malaysia, particularly in Sabah, the government has been promoting entrepreneurship among rural people to encourage them to earn their living by making good use of the diverse natural resources and local cultures of Sabah. Nevertheless, despite the government’s aim to encourage more local community in rural area to involve in entrepreneurship, the involvement of community in entrepreneurial activity is still low. It is crucial to identify the factors stimulate (or prevent) the involvement of rural community in Sabah in entrepreneurial activity. Therefore, this study tries to investigate the personal and contextual factors that may have impact on decision to start a business among the local community in Mantanani Island. In addition, this study also aims to identify the perceived benefits they receive from entrepreneurial activity. A structured face-to-face interview was conducted with 61 local communities in Mantanani Island. Data analysis revealed that passion, personal skills and self-confidence are the significant internal factors to entrepreneurial activity, whereas access to finance, labour and infrastructure are the significant external factors that are found to influence entrepreneurship. In terms of perceived rewards they received from taking up small business, it was found that respondents are predominantly agreed that entrepreneurship offers financial benefit than non-financial. In addition, this study also offers several suggestions for entrepreneurship development in Mantanani Island and it is hoped that this study may help the related agency to develop effective support policies in order to encourage more people in rural area to involve in entrepreneurship.
Keywords: Entrepreneurship, motivation, perceived rewards, rural community.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12717116 Software Test Data Generation using Ant Colony Optimization
Authors: Huaizhong Li, C.Peng Lam
Abstract:
State-based testing is frequently used in software testing. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve required test coverage. This paper proposes an Ant Colony Optimization approach to test data generation for the state-based software testing.
Keywords: Software testing, ant colony optimization, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34587115 Natural Language News Generation from Big Data
Authors: Bastian Haarmann, Lukas Sikorski
Abstract:
In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The resulting fully automatic generated news stories have a high resemblance to the style in which the human writer would draw up such a story. Topics include soccer games, stock exchange market reports, and weather forecasts. Each generated text is unique. Readyto-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save timeconsuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.
Keywords: Big data, natural language generation, publishing, robotic journalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16857114 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process
Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek
Abstract:
It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.
Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23967113 The Risk of In-work Poverty and Family Coping Strategies
Authors: A. Banovcinova, M. Zakova
Abstract:
Labor market activity and paid employment should be a key factor in protecting individuals and families from falling into poverty and providing them with sufficient resources to meet the needs of their members. However, due to various processes in the labor market as well as the influence of individual factors and often insufficient social capital, there is a relatively large group of households that cannot eliminate paid employment and find themselves in a state of so-called working poverty. The aim of the research was to find out what strategies families use in managing poverty and meeting their needs and which of these strategies prevail in the Slovak population. A quantitative research strategy was chosen. The method of data collection was a structured interview focused on finding out the use of individual management strategies and also selected demographic indicators. The research sample consisted of members of families in which at least one member has a paid job. The condition for inclusion in the research was that the family's income did not exceed 60% of the national median equalized disposable income. The analysis of the results showed 5 basic areas to which management strategies are related - work, financial security, needs, social contacts and perception of the current situation. The prevailing strategies were strategies aimed at increasing and streamlining labor market activity and the planned and effective management of the family budget. Strategies that were rejected were mainly related to debt creation. The results make it possible to identify the preferred ways of managing poverty in individual areas of life, as well as the factors that influence this behavior. This information is important for working with families living in a state of working poverty and can help professionals develop positive ways of coping for families.
Keywords: Copying strategies, family, in-work poverty, quantitative research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6057112 A New Model for Discovering XML Association Rules from XML Documents
Authors: R. AliMohammadzadeh, M. Rahgozar, A. Zarnani
Abstract:
The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation.Keywords: XML, Data Mining, Association Rule Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16307111 Modelling Silica Optical Fibre Reliability: A Software Application
Authors: I. Severin, M. Caramihai, R. El Abdi, M. Poulain, A. Avadanii
Abstract:
In order to assess optical fiber reliability in different environmental and stress conditions series of testing are performed simulating overlapping of chemical and mechanical controlled varying factors. Each series of testing may be compared using statistical processing: i.e. Weibull plots. Due to the numerous data to treat, a software application has appeared useful to interpret selected series of experiments in function of envisaged factors. The current paper presents a software application used in the storage, modelling and interpretation of experimental data gathered from optical fibre testing. The present paper strictly deals with the software part of the project (regarding the modelling, storage and processing of user supplied data).
Keywords: Optical fibres, computer aided analysis, data models, data processing, graphical user interfaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18217110 An Implementation of Data Reusable MPEG Video Coding Scheme
Authors: Vasily G. Moshnyaga
Abstract:
This paper presents an optimized MPEG2 video codec implementation, which drastically reduces the number of computations and memory accesses required for video compression. Unlike traditional scheme, we reuse data stored in frame memory to omit unnecessary coding operations and memory read/writes for unchanged macroblocks. Due to dynamic memory sharing among reference frames, data-driven macroblock characterization and selective macroblock processing, we perform less than 15% of the total operations required by a conventional coder while maintaining high picture quality.
Keywords: Data reuse, adaptive processing, video coding, MPEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12647109 Consumption Pattern and Dietary Practices of Pregnant Women in Odeda Local Government Area of Ogun State
Authors: Ademuyiwa, M. O., Sanni, S. A.
Abstract:
The importance of maternal nutritional practices during pregnancy cannot be overemphasized. This paper assessed the consumption pattern and dietary practices of 50 pregnant women selected using purposive sampling technique from three health care centres (Primary Health Care Centre, Obantoko; Primary Health Care Centre Alabata; and the General Hospital, Odeda) in Odeda Local Government Area of Ogun State, Nigeria. Structured questionnaire was used to elicit information on socioeconomic status, consumption pattern and dietary practices. Data were analyzed using the Statistical Package for Social Sciences (SPSS, 17). The results indicated that about 58% of the pregnant women were below the age of 30 while 42% were ages 28-40 years. Only 16% had tertiary education while (38%) had secondary education, 52% earn income through petty trading. On food intake, 52% got their energy source from rice on a daily basis, followed by pap (38%) and eko (34%). For protein intake, 36% consumed bean cake on a daily basis while 66% consumed moinmoin 2-3 times a week. Orange (48%) and Green Leafy vegetable (40%) accounted for the mostly consumed fruit and vegetable on daily basis. In terms of animal origin, fish (76%), meat (58%) and eggs (30%) were consumed daily, while chicken and snail were consumed occasionally by 54% and 42%, respectively. Forty-six percent (46%) of the pregnant women eat more than three times daily; while 60% of the women eat outside their homes with 42% respondents eat out lunch and only two percent least eaten out dinner. It is important to increase in awareness campaign to sensitize the pregnant women on the importance of good nutrition especially fruits, vegetables and dairy products.
Keywords: Consumption Pattern, Dietary Practices, Pregnant, Women, Nigeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49187108 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique
Authors: Hyun-Woo Cho
Abstract:
The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.
Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13157107 Increasing Replica Consistency Performances with Load Balancing Strategy in Data Grid Systems
Authors: Sarra Senhadji, Amar Kateb, Hafida Belbachir
Abstract:
Data replication in data grid systems is one of the important solutions that improve availability, scalability, and fault tolerance. However, this technique can also bring some involved issues such as maintaining replica consistency. Moreover, as grid environment are very dynamic some nodes can be more uploaded than the others to become eventually a bottleneck. The main idea of our work is to propose a complementary solution between replica consistency maintenance and dynamic load balancing strategy to improve access performances under a simulated grid environment.
Keywords: Consistency, replication, data grid, load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23247106 Nonparametric Control Chart Using Density Weighted Support Vector Data Description
Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek
Abstract:
In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.
Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21197105 Long Term Examination of the Profitability Estimation Focused on Benefits
Authors: Stephan Printz, Kristina Lahl, René Vossen, Sabina Jeschke
Abstract:
Strategic investment decisions are characterized by high innovation potential and long-term effects on the competitiveness of enterprises. Due to the uncertainty and risks involved in this complex decision making process, the need arises for well-structured support activities. A method that considers cost and the long-term added value is the cost-benefit effectiveness estimation. One of those methods is the “profitability estimation focused on benefits – PEFB”-method developed at the Institute of Management Cybernetics at RWTH Aachen University. The method copes with the challenges associated with strategic investment decisions by integrating long-term non-monetary aspects whilst also mapping the chronological sequence of an investment within the organization’s target system. Thus, this method is characterized as a holistic approach for the evaluation of costs and benefits of an investment. This participation-oriented method was applied to business environments in many workshops. The results of the workshops are a library of more than 96 cost aspects, as well as 122 benefit aspects. These aspects are preprocessed and comparatively analyzed with regards to their alignment to a series of risk levels. For the first time, an accumulation and a distribution of cost and benefit aspects regarding their impact and probability of occurrence are given. The results give evidence that the PEFB-method combines precise measures of financial accounting with the incorporation of benefits. Finally, the results constitute the basics for using information technology and data science for decision support when applying within the PEFB-method.Keywords: Cost-benefit analysis, multi-criteria decision, profitability estimation focused on benefits, risk and uncertainty analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14987104 Model-Based Person Tracking Through Networked Cameras
Authors: Kyoung-Mi Lee, Youn-Mi Lee
Abstract:
This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.
Keywords: Person tracking, human model, networked cameras, vision-based surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14887103 Slugging Frequency Correlation for Inclined Gas-liquid Flow
Authors: V. Hernandez-Perez, M. Abdulkadir, B. J. Azzopardi
Abstract:
In this work, new experimental data for slugging frequency in inclined gas-liquid flow are reported, and a new correlation is proposed. Scale experiments were carried out using a mixture of air and water in a 6 m long pipe. Two different pipe diameters were used, namely, 38 and 67 mm. The data were taken with capacitance type sensors at a data acquisition frequency of 200 Hz over an interval of 60 seconds. For the range of flow conditions studied, the liquid superficial velocity is observed to influence the frequency strongly. A comparison of the present data with correlations available in the literature reveals a lack of agreement. A new correlation for slug frequency has been proposed for the inclined flow, which represents the main contribution of this work.Keywords: slug frequency, inclined flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31617102 FCA-based Conceptual Knowledge Discovery in Folksonomy
Authors: Yu-Kyung Kang, Suk-Hyung Hwang, Kyoung-Mo Yang
Abstract:
The tagging data of (users, tags and resources) constitutes a folksonomy that is the user-driven and bottom-up approach to organizing and classifying information on the Web. Tagging data stored in the folksonomy include a lot of very useful information and knowledge. However, appropriate approach for analyzing tagging data and discovering hidden knowledge from them still remains one of the main problems on the folksonomy mining researches. In this paper, we have proposed a folksonomy data mining approach based on FCA for discovering hidden knowledge easily from folksonomy. Also we have demonstrated how our proposed approach can be applied in the collaborative tagging system through our experiment. Our proposed approach can be applied to some interesting areas such as social network analysis, semantic web mining and so on.
Keywords: Folksonomy data mining, formal concept analysis, collaborative tagging, conceptual knowledge discovery, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20277101 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy
Authors: Nazaket Gazieva
Abstract:
Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.
Keywords: Biometric voice prints, fundamental frequency, phonogram, speech signal, temporal characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5727100 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Authors: Ruchika Malhotra, Megha Khanna
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15197099 Plant Varieties Selection System
Authors: Kitti Koonsanit, Chuleerat Jaruskulchai, Poonsak Miphokasap, Apisit Eiumnoh
Abstract:
In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.
Keywords: Plant varieties selection system, decision tree, expert recommendation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17927098 Jitter Transfer in High Speed Data Links
Authors: Tsunwai Gary Yip
Abstract:
Phase locked loops for data links operating at 10 Gb/s or faster are low phase noise devices designed to operate with a low jitter reference clock. Characterization of their jitter transfer function is difficult because the intrinsic noise of the device is comparable to the random noise level in the reference clock signal. A linear model is proposed to account for the intrinsic noise of a PLL. The intrinsic noise data of a PLL for 10 Gb/s links is presented. The jitter transfer function of a PLL in a test chip for 12.8 Gb/s data links was determined in experiments using the 400 MHz reference clock as the source of simultaneous excitations over a wide range of frequency. The result shows that the PLL jitter transfer function can be approximated by a second order linear model.Keywords: Intrinsic phase noise, jitter in data link, PLL jitter transfer function, high speed clocking in electronic circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19457097 Supplier Sift – A Strategic Need of Modern Entrepreneurship
Authors: Rizwan Moeen, Riaz Ahmad, Tanweer Ul Islam, Shahid Ikramullah, Muhammad Umer
Abstract:
Supplier appraisal fosters energy in Supply Chain Management and helps in best optimization of viable business partners for a company. Many Decision Making techniques have already been proposed by researchers for supplier-s appraisal. However, Analytic Hierarchy Process (AHP) is assumed to be the most structured technique to attain near-best solution of the problem. This paper focuses at implementation of AHP in the procurement processes. It also suggests that on what factors a Public Sector Enterprises must focus while dealing with their suppliers and what should the suppliers do to synchronize their activities with the strategic objectives of Organization. It also highlights the weak areas in supplier appraisal process with a view to suggest viable recommendations.Keywords: AHP, MCDM techniques, Supply Chain Management (SCM), Supplier appraisal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22817096 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.
Keywords: Deep learning, data mining, gender predication, MOOCs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13617095 Investigating the Areas of Self-Reflection in Malaysian Students’ Personal Blogs: A Case Study
Authors: Chen May Oh, Nadzrah Abu Bakar
Abstract:
This case study investigates the areas of self-reflection through the written content of four university students’ blogs. The study was undertaken to explore the categories of self-reflection in relation to the use of blogs. Data collection methods included downloading students’ blog entries and recording individual interviews to further support the data. Data was analyzed using computer assisted qualitative data analysis software, Nvivo, to categories and code the data. The categories of self-reflection revealed in the findings showed that university students used blogs to reflect on (1) life in varsity, (2) emotions and feelings, (3) various relationships, (4) personal growth, (5) spirituality, (6) health conditions, (7) busyness with daily chores, (8) gifts for people and themselves and (9) personal interests. Overall, all four of the students had positive experiences and felt satisfied using blogs for self-reflection.
Keywords: Blogging, personal growth, self-reflection, university students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12117094 A Dictionary Learning Method Based On EMD for Audio Sparse Representation
Authors: Yueming Wang, Zenghui Zhang, Rendong Ying, Peilin Liu
Abstract:
Sparse representation has long been studied and several dictionary learning methods have been proposed. The dictionary learning methods are widely used because they are adaptive. In this paper, a new dictionary learning method for audio is proposed. Signals are at first decomposed into different degrees of Intrinsic Mode Functions (IMF) using Empirical Mode Decomposition (EMD) technique. Then these IMFs form a learned dictionary. To reduce the size of the dictionary, the K-means method is applied to the dictionary to generate a K-EMD dictionary. Compared to K-SVD algorithm, the K-EMD dictionary decomposes audio signals into structured components, thus the sparsity of the representation is increased by 34.4% and the SNR of the recovered audio signals is increased by 20.9%.
Keywords: Dictionary Learning, EMD, K-means Method, Sparse Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627