Search results for: probability-based damage detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2019

Search results for: probability-based damage detection

1479 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: Android, permissions combination, API calls, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
1478 Protective Effect of Ethanolic Extract of Polyherbal Formulation on Carbon Tetrachloride Induced Liver Injury

Authors: R. Kokilavani, K. Gurusamy, K. Arumugasamy

Abstract:

Protective effect of ethanolic extract of polyherbal formulation (PHF) was studied on carbon tetrachloride induced liver damage on carbon tetrachloride induced liver damage. Treatment of rats with 250mg /kg body weight of ethanolic extract of PHF protected rats against carbon tetrachloride liver injury by significant lowerering 5’ nucleotidase (5’NT), Gamma Glutamyl transferase (GGT), Glutamate dehdyrogenasse (GDH) and Succinate Dehydrogenase (SDH) levels compared to control. Normalization in these enzyme levels indicates strong hepatoprotective property of PHF extract.

Keywords: Carbon tetrachloride, ethanolic, hepatoprotective, polyherbal formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1477 Sequential Straightforward Clustering for Local Image Block Matching

Authors: Mohammad Akbarpour Sekeh, Mohd. Aizaini Maarof, Mohd. Foad Rohani, Malihe Motiei

Abstract:

Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.

Keywords: Copy-paste forgery detection, Duplicated region, Timecomplexity, Local block matching, Sequential block clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
1476 Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System

Authors: L. Khoshnevisan, H. R. Momeni, A. Ashraf-Modarres

Abstract:

One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.

Keywords: Boiler, fault detection, robustness, simplified sliding-mode observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
1475 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation

Authors: Lae-Jeong Park

Abstract:

The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.

Keywords: Pedestrian detection, color segmentation, false positives, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
1474 Application of Soft Systems Methodology in Solving Disaster Emergency Logistics Problems

Authors: Alhasan Hakami, Arun Kumar, Sung J Shim, Yousef Abu Nahleh

Abstract:

In recent years, many high intensity earthquakes have occurred around the world, such as the 2011 earthquake in Tohoku, Japan. These large-scale disasters caused huge casualties and losses. In addition, inefficient disaster response operations also caused the second wave of casualties and losses, and expanded the damage. Effective disaster management can be used to respond to the chaotic situation, and reduce the damage; however, some inefficient disaster response operations are still used. Therefore, this case study chose the 921 earthquake for analyzing disaster emergency logistics problems and proposed the Soft Systems Methodology (SSM) to solve disaster emergency logistics problems. Moreover, it analyses the effect of human factors on system operation, and suggests a solution to improve the system.

Keywords: Soft systems methodology, emergency logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013
1473 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142
1472 Monitoring and Analysis of Bridge Crossing Ground Fissures

Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou

Abstract:

Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.

Keywords: Bridge monitoring, ground fissures, typical disease, structural displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648
1471 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
1470 Design and Performance Improvement of Three-Dimensional Optical Code Division Multiple Access Networks with NAND Detection Technique

Authors: Satyasen Panda, Urmila Bhanja

Abstract:

In this paper, we have presented and analyzed three-dimensional (3-D) matrices of wavelength/time/space code for optical code division multiple access (OCDMA) networks with NAND subtraction detection technique. The 3-D codes are constructed by integrating a two-dimensional modified quadratic congruence (MQC) code with one-dimensional modified prime (MP) code. The respective encoders and decoders were designed using fiber Bragg gratings and optical delay lines to minimize the bit error rate (BER). The performance analysis of the 3D-OCDMA system is based on measurement of signal to noise ratio (SNR), BER and eye diagram for a different number of simultaneous users. Also, in the analysis, various types of noises and multiple access interference (MAI) effects were considered. The results obtained with NAND detection technique were compared with those obtained with OR and AND subtraction techniques. The comparison results proved that the NAND detection technique with 3-D MQC\MP code can accommodate more number of simultaneous users for longer distances of fiber with minimum BER as compared to OR and AND subtraction techniques. The received optical power is also measured at various levels of BER to analyze the effect of attenuation.

Keywords: Cross correlation, three-dimensional optical code division multiple access, spectral amplitude coding optical code division multiple access, multiple access interference, phase induced intensity noise, three-dimensional modified quadratic congruence/modified prime code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1469 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface

Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, Kh. V. Nerkararyan

Abstract:

Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depend on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.

Keywords: Fiber-tip, Liquid-air interface, Nano vibration, Opto-mechanical sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
1468 Face Detection in Color Images using Color Features of Skin

Authors: Fattah Alizadeh, Saeed Nalousi, Chiman Savari

Abstract:

Because of increasing demands for security in today-s society and also due to paying much more attention to machine vision, biometric researches, pattern recognition and data retrieval in color images, face detection has got more application. In this article we present a scientific approach for modeling human skin color, and also offer an algorithm that tries to detect faces within color images by combination of skin features and determined threshold in the model. Proposed model is based on statistical data in different color spaces. Offered algorithm, using some specified color threshold, first, divides image pixels into two groups: skin pixel group and non-skin pixel group and then based on some geometric features of face decides which area belongs to face. Two main results that we received from this research are as follow: first, proposed model can be applied easily on different databases and color spaces to establish proper threshold. Second, our algorithm can adapt itself with runtime condition and its results demonstrate desirable progress in comparison with similar cases.

Keywords: face detection, skin color modeling, color, colorfulimages, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
1467 Metamorphism, Formal Grammars and Undecidable Code Mutation

Authors: Eric Filiol

Abstract:

This paper presents a formalisation of the different existing code mutation techniques (polymorphism and metamorphism) by means of formal grammars. While very few theoretical results are known about the detection complexity of viral mutation techniques, we exhaustively address this critical issue by considering the Chomsky classification of formal grammars. This enables us to determine which family of code mutation techniques are likely to be detected or on the contrary are bound to remain undetected. As an illustration we then present, on a formal basis, a proof-of-concept metamorphic mutation engine denoted PB MOT, whose detection has been proven to be undecidable.

Keywords: Polymorphism, Metamorphism, Formal Grammars, Formal Languages, Language Decision, Code Mutation, Word Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
1466 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
1465 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector

Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy

Abstract:

In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.

Keywords: 4-quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency, ATmega 32 microcontrollers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1464 Detecting the Edge of Multiple Images in Parallel

Authors: Prakash K. Aithal, U. Dinesh Acharya, Rajesh Gopakumar

Abstract:

Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel. The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. Message Passing Interface (MPI) and Open Computing Language (OpenCL) is used to achieve task and pixel level parallelism respectively.

Keywords: Edge detection, multicore, GPU, openCL, MPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
1463 An Efficient Clustering Technique for Copy-Paste Attack Detection

Authors: N. Chaitawittanun, M. Munlin

Abstract:

Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.

Keywords: Image detection, forgery image, copy-paste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
1462 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: Chebyshev polynomials, Fractional order differentiator, Laplacian of Gaussian (LoG) method, Low contrast image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276
1461 Real-Time Detecting Concentration of Mycobacterium Tuberculosis by CNTFET Biosensor

Authors: Hsiao-Wei Wang, Jung-Tang Huang, Chun-Chiang Lin

Abstract:

Aptamers are useful tools in microorganism researches, diagnoses, and treatment. Aptamers are specific target molecules formed by oligonucleic acid molecules, and are not decomposed by alcohol. Aptamers used to detect Mycobacterium tuberculosis (MTB) have been proved to have specific affinity to the outer membrane proteins of MTB. This article presents a biosensor chip set with aptamers for early detection of MTB with high specificity and sensitivity, even in very low concentration. Meanwhile, we have already made a modified hydrophobic facial mask module with internal rendering hydrophobic for effectively collecting M. tuberculosis.

Keywords: Aptamers, CNTFET, Mycobacterium tuberculosis, early detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
1460 Study of Integrated Vehicle Image System Including LDW, FCW, and AFS

Authors: Yi-Feng Su, Chia-Tseng Chen, Hsueh-Lung Liao

Abstract:

The objective of this research is to develop an advanced driver assistance system characterized with the functions of lane departure warning (LDW), forward collision warning (FCW) and adaptive front-lighting system (AFS). The system is mainly configured a CCD/CMOS camera to acquire the images of roadway ahead in association with the analysis made by an image-processing unit concerning the lane ahead and the preceding vehicles. The input image captured by a camera is used to recognize the lane and the preceding vehicle positions by image detection and DROI (Dynamic Range of Interesting) algorithms. Therefore, the system is able to issue real-time auditory and visual outputs of warning when a driver is departing the lane or driving too close to approach the preceding vehicle unwittingly so that the danger could be prevented from occurring. During the nighttime, in addition to the foregoing warning functions, the system is able to control the bending light of headlamp to provide an immediate light illumination when making a turn at a curved lane and adjust the level automatically to reduce the lighting interference against the oncoming vehicles driving in the opposite direction by the curvature of lane and the vanishing point estimations. The experimental results show that the integrated vehicle image system is robust to most environments such as the lane detection and preceding vehicle detection average accuracy performances are both above 90 %.

Keywords: Lane mark detection, lane departure warning (LDW), dynamic range of interesting (DROI), forward collision warning (FCW), adaptive front-lighting system (AFS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
1459 Data Mining Techniques in Computer-Aided Diagnosis: Non-Invasive Cancer Detection

Authors: Florin Gorunescu

Abstract:

Diagnosis can be achieved by building a model of a certain organ under surveillance and comparing it with the real time physiological measurements taken from the patient. This paper deals with the presentation of the benefits of using Data Mining techniques in the computer-aided diagnosis (CAD), focusing on the cancer detection, in order to help doctors to make optimal decisions quickly and accurately. In the field of the noninvasive diagnosis techniques, the endoscopic ultrasound elastography (EUSE) is a recent elasticity imaging technique, allowing characterizing the difference between malignant and benign tumors. Digitalizing and summarizing the main EUSE sample movies features in a vector form concern with the use of the exploratory data analysis (EDA). Neural networks are then trained on the corresponding EUSE sample movies vector input in such a way that these intelligent systems are able to offer a very precise and objective diagnosis, discriminating between benign and malignant tumors. A concrete application of these Data Mining techniques illustrates the suitability and the reliability of this methodology in CAD.

Keywords: Endoscopic ultrasound elastography, exploratorydata analysis, neural networks, non-invasive cancer detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1458 Interspecific Variation in Heat Stress Tolerance and Oxidative Damage among 15 C3 Species

Authors: Wagdi S. Soliman, Shu-ichi Sugiyama

Abstract:

The C3 plants are frequently suffering from exposure to high temperature stress which limits the growth and yield of these plants. This study seeks to clarify the physiological mechanisms of heat tolerance in relation to oxidative stress in C3 species. Fifteen C3 species were exposed to prolonged moderately high temperature stress 36/30°C for 40 days in a growth chamber. Chlorophyll fluorescence (Fv/Fm) showed great difference among species at 40 days of the stress. The species showed decreases in Fv/Fm and increases in malondialdehyde (MDA) content under stress condition as well as negative correlation between Fv/Fm and MDA (r = -0.61*) at 40 days of the stress. Hydrogen peroxide (H2O2) content before and after stress in addition to its response under stress showed great differences among species. The results suggest that the difference in heat tolerance among C3 species is closely associated with the ability to suppress oxidative damage but not with the content of reactive oxygen species (ROS) which is regulated by complex network.

Keywords: C3 species, Fv/Fm, heat stress, oxidative stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1457 BugCatcher.Net: Detecting Bugs and Proposing Corrective Solutions

Authors: Sheetal Chavan, P. J. Kulkarni, Vivek Shanbhag

Abstract:

Although achieving zero-defect software release is practically impossible, software industries should take maximum care to detect defects/bugs well ahead in time allowing only bare minimums to creep into released version. This is a clear indicator of time playing an important role in the bug detection. In addition to this, software quality is the major factor in software engineering process. Moreover, early detection can be achieved only through static code analysis as opposed to conventional testing. BugCatcher.Net is a static analysis tool, which detects bugs in .NET® languages through MSIL (Microsoft Intermediate Language) inspection. The tool utilizes a Parser based on Finite State Automata to carry out bug detection. After being detected, bugs need to be corrected immediately. BugCatcher.Net facilitates correction, by proposing a corrective solution for reported warnings/bugs to end users with minimum side effects. Moreover, the tool is also capable of analyzing the bug trend of a program under inspection.

Keywords: Dependence, Early solution, Finite State Automata, Grammar, Late solution, Parser State Transition Diagram, StaticProgram Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
1456 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network

Authors: Mei Shan Ngan, Chee Wei Tan

Abstract:

Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.

Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3756
1455 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: Strain rate jump tests, Volume Strain, High Density Polyethylene, Large strain, Thermodynamics approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
1454 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: Adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
1453 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209
1452 The Fatigue Damage Accumulation on Systems of Concentrators

Authors: Alexander Urbach, Mukharbij Banov, Vladislav Turko

Abstract:

Fatigue tests of specimen-s with numerous holes are presented. The tests were made up till fatigue cracks have been created on both sides of the hole. Their extension was stopping with pressed plastic deformation at the mouth of the detected crack. It is shown that the moments of occurrence of cracks on holes are stochastically dependent. This dependence has positive and negative correlation relations. Shown that the positive correlation is formed across of the applied force, while negative one – along it. The negative relationship extends over a greater distance. The mathematical model of dependence area formation is represented as well as the estimating of model parameters. The positive correlation of fatigue cracks origination can be considered as an extension of one main crack. With negative correlation the first crack locates the place of its origin, leading to the appearance of multiple cracks; do not merge with each other.

Keywords: Correlation analysis, fatigue damage accumulation, local area, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
1451 Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell

Authors: Mahanijah Md Kamal., Dingli Yu

Abstract:

This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.

Keywords: Polymer electrolyte membrane fuel cell, radial basis function neural networks, fault detection, fault isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
1450 Comparison of Multi-User Detectors of DS-CDMA System

Authors: Kavita Khairnar, Shikha Nema

Abstract:

DS-CDMA system is well known wireless technology. This system suffers from MAI (Multiple Access Interference) caused by Direct Sequence users. Multi-User Detection schemes were introduced to detect the users- data in presence of MAI. This paper focuses on linear multi-user detection schemes used for data demodulation. Simulation results depict the performance of three detectors viz-conventional detector, Decorrelating detector and Subspace MMSE (Minimum Mean Square Error) detector. It is seen that the performance of these detectors depends on the number of paths and the length of Gold code used.

Keywords: Cross Correlation Matrix, MAI, Multi-UserDetection, Multipath Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113