Search results for: optimal chiller loading
1728 Analysis of Motor Cycle Helmet under Static and Dynamic Loading
Authors: V. C. Sathish Gandhi, R. Kumaravelan, S. Ramesh, M. Venkatesan, M. Ponraj
Abstract:
Each year nearly nine hundred persons die in head injuries and over fifty thousand persons are severely injured due to non wearing of helmets. In motor cycle accidents, the human head is exposed to heavy impact loading against natural protection. In this work, an attempt has been made for analyzing the helmet with all the standard data. The simulation software ‘ANSYS’ is used to analyze the helmet with different conditions such as bottom fixed-load on top surface, bottom fixed -load on top line, side fixed –load on opposite surface, side fixed-load on opposite line and dynamic analysis. The maximum force of 19.5 kN is applied on the helmet to study the model in static and dynamic conditions. The simulation has been carried out for the static condition for the parameters like total deformation, strain energy, von-Mises stress for different cases. The dynamic analysis has been performed for the parameter like total deformation and equivalent elastic strain. The result shows that these values are concentrated in the retention portion of the helmet. These results have been compared with the standard experimental data proposed by the BIS and well within the acceptable limit.
Keywords: Helmet, Deformation, Strain energy, Equivalent elastic strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48891727 Optimization of Process Parameters for Friction Stir Welding of Cast Alloy AA7075 by Taguchi Method
Authors: Dhairya Partap Sing, Vikram Singh, Sudhir Kumar
Abstract:
This investigation proposes Friction stir welding technique to solve the fusion welding problems. Objectives of this investigation are fabrication of AA7075-10%wt. Silicon carbide (SiC) aluminum metal matrix composite and optimization of optimal process parameters of friction stir welded AA7075-10%wt. SiC Composites. Composites were prepared by the mechanical stir casting process. Experiments were performed with four process parameters such as tool rotational speed, weld speed, axial force and tool geometry considering three levels of each. The quality characteristics considered is joint efficiency (JE). The welding experiments were conducted using L27 orthogonal array. An orthogonal array and design of experiments were used to give best possible welding parameters that give optimal JE. The fabricated welded joints using rotational speed of 1500 rpm, welding speed (1.3 mm/sec), axial force (7 k/n) of and tool geometry (square) give best possible results. Experimental result reveals that the tool rotation speed, welding speed and axial force are the significant process parameters affecting the welding performance. The predicted optimal value of percentage JE is 95.621. The confirmation tests also have been done for verifying the results.
Keywords: Metal matrix composite, axial force, joint efficiency, rotational speed, traverse speed, tool geometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8701726 Modeling Erosion Control in Oil Production Wells
Authors: Kenneth I.Eshiet, Yong Sheng
Abstract:
The sand production problem has led researchers into making various attempts to understand the phenomenon. The generally accepted concept is that the occurrence of sanding is due to the in-situ stress conditions and the induced changes in stress that results in the failure of the reservoir sandstone during hydrocarbon production from wellbores. By using a hypothetical cased (perforated) well, an approach to the problem is presented here by using Finite Element numerical modelling techniques. In addition to the examination of the erosion problem, the influence of certain key parameters is studied in order to ascertain their effect on the failure and subsequent erosion process. The major variables investigated include: drawdown, perforation depth, and the erosion criterion. Also included is the determination of the optimal mud pressure for given operational and reservoir conditions. The improved understanding between parameters enables the choice of optimal values to minimize sanding during oil production.
Keywords: Equivalent Plastic Strain, Erosion, Hydrocarbon Production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14721725 Quasi-Static Analysis of End Plate Beam-to-Column Connections
Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones
Abstract:
This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.
Keywords: Quasi-static, end plate, finite element, connections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19521724 The Knapsack Sharing Problem: A Tree Search Exact Algorithm
Authors: Mhand Hifi, Hedi Mhalla
Abstract:
In this paper, we study the knapsack sharing problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of a tree search for optimally solving the problem. The used method combines two complementary phases: a reduction interval search phase and a branch and bound procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for decomposing the problem into a series of knapsack problems. Second, the tree search procedure is applied in order to attain a set of optimal capacities characterizing the knapsack problems. Finally, the performance of the proposed optimal algorithm is evaluated on a set of instances of the literature and its runtime is compared to the best exact algorithm of the literature.
Keywords: Branch and bound, combinatorial optimization, knap¬sack, knapsack sharing, heuristics, interval reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591723 Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes
Authors: Pandaba Patro, Brundaban Patro
Abstract:
The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the experimental data. We observe that the convection and diffusion terms in the granular temperature cannot be neglected in gas solid flow simulation along a horizontal pipe. The particle-wall collision and lift also play important role in eulerian modeling. We also investigated the effect of flow parameters like gas velocity, particle properties and particle loading on pressure drop prediction in different pipe diameters. Pressure drop increases with gas velocity and particle loading. The gas velocity has the same effect ((proportional toU2 ) as single phase flow on pressure drop prediction. With respect to particle diameter, pressure drop first increases, reaches a peak and then decreases. The peak is a strong function of pipe bore.
Keywords: CFD, Eulerian modeling, gas solid flow, KTGF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31751722 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks
Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari
Abstract:
With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.Keywords: Water pipe networks, maintenance management, reliability analysis, optimum maintenance plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12561721 Power System Load Shedding: Key Issues and New Perspectives
Authors: H. Bevrani, A. G. Tikdari, T. Hiyama
Abstract:
Optimal load shedding (LS) design as an emergency plan is one of the main control challenges posed by emerging new uncertainties and numerous distributed generators including renewable energy sources in a modern power system. This paper presents an overview of the key issues and new challenges on optimal LS synthesis concerning the integration of wind turbine units into the power systems. Following a brief survey on the existing LS methods, the impact of power fluctuation produced by wind powers on system frequency and voltage performance is presented. The most LS schemas proposed so far used voltage or frequency parameter via under-frequency or under-voltage LS schemes. Here, the necessity of considering both voltage and frequency indices to achieve a more effective and comprehensive LS strategy is emphasized. Then it is clarified that this problem will be more dominated in the presence of wind turbines.
Keywords: Load shedding, emergency control, voltage, frequency, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41391720 The Characteristics of Static Plantar Loading in the First-Division College Sprint Athletes
Authors: Tong-Hsien Chow
Abstract:
Background: Plantar pressure measurement is an effective method for assessing plantar loading and can be applied to evaluating movement performance of the foot. The purpose of this study is to explore the sprint athletes’ plantar loading characteristics and pain profiles in static standing. Methods: Experiments were undertaken on 80 first-division college sprint athletes and 85 healthy non-sprinters. ‘JC Mat’, the optical plantar pressure measurement was applied to examining the differences between both groups in the arch index (AI), three regional and six distinct sub-regional plantar pressure distributions (PPD), and footprint characteristics. Pain assessment and self-reported health status in sprint athletes were examined for evaluating their common pain areas. Results: Findings from the control group, the males’ AI fell into the normal range. Yet, the females’ AI was classified as the high-arch type. AI values of the sprint group were found to be significantly lower than the control group. PPD were higher at the medial metatarsal bone of both feet and the lateral heel of the right foot in the sprint group, the males in particular, whereas lower at the medial and lateral longitudinal arches of both feet. Footprint characteristics tended to support the results of the AI and PPD, and this reflected the corresponding pressure profiles. For the sprint athletes, the lateral knee joint and biceps femoris were the most common musculoskeletal pains. Conclusions: The sprint athletes’ AI were generally classified as high arches, and that their PPD were categorized between the features of runners and high-arched runners. These findings also correspond to the profiles of patellofemoral pain syndrome (PFPS)-related plantar pressure. The pain profiles appeared to correspond to the symptoms of high-arched runners and PFPS. The findings reflected upon the possible link between high arches and PFPS. The correlation between high-arched runners and PFPS development is worth further studies.Keywords: Sprint athletes, arch index, plantar pressure distributions, high arches, patellofemoral pain syndrome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331719 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading
Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla
Abstract:
Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.
Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12651718 An Aggregate Production Planning Model for Brass Casting Industry in Fuzzy Environment
Authors: Ömer Faruk Baykoç, Ümit Sami Sakalli
Abstract:
In this paper, we propose a fuzzy aggregate production planning (APP) model for blending problem in a brass factory which is the problem of computing optimal amounts of raw materials for the total production of several types of brass in a period. The model has deterministic and imprecise parameters which follows triangular possibility distributions. The brass casting APP model can not always be solved by using common approaches used in the literature. Therefore a mathematical model is presented for solving this problem. In the proposed model, the Lai and Hwang-s fuzzy ranking concept is relaxed by using one constraint instead of three constraints. An application of the brass casting APP model in a brass factory shows that the proposed model successfully solves the multi-blend problem in casting process and determines the optimal raw material purchasing policies.Keywords: Aggregate production planning, Blending, brasscasting, possibilistic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19081717 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network
Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna
Abstract:
This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.
Keywords: Optimization, distributed generation, integration, slime mould algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6441716 Load Discontinuity in Shock Response and Its Remedies
Authors: Shuenn-Yih Chang, Chiu-Li Huang
Abstract:
It has been shown that a load discontinuity at the end of an impulse will result in an extra impulse and hence an extra amplitude distortion if a step-by-step integration method is employed to yield the shock response. In order to overcome this difficulty, three remedies are proposed to reduce the extra amplitude distortion. The first remedy is to solve the momentum equation of motion instead of the force equation of motion in the step-by-step solution of the shock response, where an external momentum is used in the solution of the momentum equation of motion. Since the external momentum is a resultant of the time integration of external force, the problem of load discontinuity will automatically disappear. The second remedy is to perform a single small time step immediately upon termination of the applied impulse while the other time steps can still be conducted by using the time step determined from general considerations. This is because that the extra impulse caused by a load discontinuity at the end of an impulse is almost linearly proportional to the step size. Finally, the third remedy is to use the average value of the two different values at the integration point of the load discontinuity to replace the use of one of them for loading input. The basic motivation of this remedy originates from the concept of no loading input error associated with the integration point of load discontinuity. The feasibility of the three remedies are analytically explained and numerically illustrated.Keywords: Dynamic analysis, load discontinuity, shock response, step-by-step integration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13321715 A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor
Authors: Mehdi Nasri, Hossein Nezamabadi-pour, Malihe Maghfoori
Abstract:
This Paper presents a particle swarm optimization (PSO) method for determining the optimal proportional-integral-derivative (PID) controller parameters, for speed control of a linear brushless DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The brushless DC motor is modelled in Simulink and the PSO algorithm is implemented in MATLAB. Comparing with Genetic Algorithm (GA) and Linear quadratic regulator (LQR) method, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of a linear brushless DC motor.
Keywords: Brushless DC motor, Particle swarm optimization, PID Controller, Optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49621714 Investigation of Thermal and Mechanical Loading on Functional Graded Material Plates
Authors: Mine Uslu Uysal
Abstract:
This paper interested in the mechanical deformation behavior of shear deformable functionally graded ceramic-metal (FGM) plates. Theoretical formulations are based on power law theory when build up functional graded material. The mechanical properties of the plate are graded in the thickness direction according to a power-law Displacement and stress is obtained using finite element method (FEM). The load is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of thermo-mechanical deformation behavior. This thesis will explore analysis of FGM flat plates and shell panels, and their applications to r structural problems. FGMs are first characterized as flat plates under pressure in order to understand the effect variation of material properties has on structural response. In addition, results are compared to published results in order to show the accuracy of modeling FGMs using ABAQUS software.
Keywords: Functionally graded material, finite element method, thermal and structural loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35651713 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).
Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11201712 Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms
Authors: Muhammad Naeem, Syed Ismail Shah, Habibullah Jamal
Abstract:
In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.Keywords: Genetic Algorithm (GA), Multiple AccessInterference (MAI), Multistage Detectors (MSD), SuccessiveInterference Cancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20471711 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Authors: Alexandros Leontitsis, Archana P. Sangole
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.Keywords: Parameter estimation, self-organizing feature maps, spherical topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15191710 Optimization of Flexible Job Shop Scheduling Problem with Sequence Dependent Setup Times Using Genetic Algorithm Approach
Authors: Sanjay Kumar Parjapati, Ajai Jain
Abstract:
This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order.
Keywords: Flexible Job Shop, Genetic Algorithm, Makespan, Sequence Dependent Setup Times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32941709 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States
Authors: Ashish Saini, A.K. Saxena
Abstract:
The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151708 Stock Price Forecast by Using Neuro-Fuzzy Inference System
Authors: Ebrahim Abbasi, Amir Abouec
Abstract:
In this research, the researchers have managed to design a model to investigate the current trend of stock price of the "IRAN KHODRO corporation" at Tehran Stock Exchange by utilizing an Adaptive Neuro - Fuzzy Inference system. For the Longterm Period, a Neuro-Fuzzy with two Triangular membership functions and four independent Variables including trade volume, Dividend Per Share (DPS), Price to Earning Ratio (P/E), and also closing Price and Stock Price fluctuation as an dependent variable are selected as an optimal model. For the short-term Period, a neureo – fuzzy model with two triangular membership functions for the first quarter of a year, two trapezoidal membership functions for the Second quarter of a year, two Gaussian combination membership functions for the third quarter of a year and two trapezoidal membership functions for the fourth quarter of a year were selected as an optimal model for the stock price forecasting. In addition, three independent variables including trade volume, price to earning ratio, closing Stock Price and a dependent variable of stock price fluctuation were selected as an optimal model. The findings of the research demonstrate that the trend of stock price could be forecasted with the lower level of error.Keywords: Stock Price forecast, membership functions, Adaptive Neuro-Fuzzy Inference System, trade volume, P/E, DPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26131707 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.
Keywords: Random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4481706 Biomechanical Analysis of the Basic Classical Dance Jump – The Grand Jeté
Authors: M. Kalichová
Abstract:
The aim of this study was to analyse the most important parameters determining the quality of the motion structure of the basic classical dance jump – grand jeté.Research sample consisted of 8 students of the Dance Conservatory in Brno. Using the system Simi motion we performed a 3D kinematic analysis of the jump. On the basis of the comparison of structure quality and measured data of the grand jeté, we defined the optimal values of the relevant parameters determining the quality of the performance. The take-off speed should achieve about 2.4 m·s-1, the optimum take-off angle is 28 - 30º. The take-off leg should swing backward at the beginning of the flight phase with the minimum speed of 3.3 m·s-1.If motor abilities of dancers achieve the level necessary for optimal performance of a classical dance jump, there is room for certain variability of the structure of the dance jump.Keywords: biomechanical analysis, classical dance, grand jeté, jump
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78821705 Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost
Authors: L. Abdelmalek, M. Zerikat, M. Rahli
Abstract:
In this paper, we present a comparative study of the genetic algorithms and Hessian-s methods for optimal research of the active powers in an electric network of power. The objective function which is the performance index of production of electrical energy is minimized by satisfying the constraints of the equality type and inequality type initially by the Hessian-s methods and in the second time by the genetic Algorithms. The results found by the application of AG for the minimization of the electric production costs of power are very encouraging. The algorithms seem to be an effective technique to solve a great number of problems and which are in constant evolution. Nevertheless it should be specified that the traditional binary representation used for the genetic algorithms creates problems of optimization of management of the large-sized networks with high numerical precision.Keywords: Genetic algorithm, Flow of optimum loadimpedances, Hessians method, Optimal distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12901704 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme
Authors: Yoichi Hikino, Mutsuto Kawahara
Abstract:
The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651703 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18461702 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9121701 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization
Authors: Lana Dalawr Jalal
Abstract:
This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex threedimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.Keywords: Obstacle Avoidance, Particle Swarm Optimization, Three-Dimensional Path Planning Unmanned Aerial Vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20461700 Optimal Feedback Linearization Control of PEM Fuel Cell
Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh
Abstract:
This paper presents a new method to design nonlinear feedback linearization controller for PEMFCs (Polymer Electrolyte Membrane Fuel Cells). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEMFCs. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEMFC system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA (Non-Dominated Sorting Genetic Algorithm)-II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.
Keywords: Feedback Linearization controller, NSGA, Optimal Control, PEMFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22481699 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform
Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu
Abstract:
Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.
Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance empirical formula, typical SQL query tasks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837