Search results for: multivariate adaptive regression spline
1148 Feature Preserving Image Interpolation and Enhancement Using Adaptive Bidirectional Flow
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (''jaggies'') along the tangent directions. In order to preserve image features such as edges, angles and textures, the nonlinear diffusion coefficients are locally adjusted according to the first and second order directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directionalderivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011147 Development of Underactuated Robot Hand Using Cross Section Deformation Spring
Authors: Naoki Saito, Daisuke Kon, Toshiyuki Sato
Abstract:
This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of across section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.
Keywords: Robot hand, Underactuated mechanism, Cross section deformation spring, Prosthetic hand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16701146 Multiple Crack Identification Using Frequency Measurement
Authors: J.W. Xiang, M. Liang
Abstract:
This paper presents a method to detect multiple cracks based on frequency information. When a structure is subjected to dynamic or static loads, cracks may develop and the modal frequencies of the cracked structure may change. To detect cracks in a structure, we construct a high precision wavelet finite element (EF) model of a certain structure using the B-spline wavelet on the interval (BSWI). Cracks can be modeled by rotational springs and added to the FE model. The crack detection database will be obtained by solving that model. Then the crack locations and depths can be determined based on the frequency information from the database. The performance of the proposed method has been numerically verified by a rotor example.Keywords: Rotor, frequency measurement, multiple cracks, wavelet finite element method, identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331145 Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization
Authors: Samad Nejatian, Vahideh Rezaie, Vahid Asadpour
Abstract:
This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.Keywords: fuzzy system, low noise amplifier, microwaveamplifier, space mapping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17981144 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling
Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao
Abstract:
Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.Keywords: Neural Network, Fuzzy, River, Forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12931143 Optimal Convolutive Filters for Real-Time Detection and Arrival Time Estimation of Transient Signals
Authors: Michal Natora, Felix Franke, Klaus Obermayer
Abstract:
Linear convolutive filters are fast in calculation and in application, and thus, often used for real-time processing of continuous data streams. In the case of transient signals, a filter has not only to detect the presence of a specific waveform, but to estimate its arrival time as well. In this study, a measure is presented which indicates the performance of detectors in achieving both of these tasks simultaneously. Furthermore, a new sub-class of linear filters within the class of filters which minimize the quadratic response is proposed. The proposed filters are more flexible than the existing ones, like the adaptive matched filter or the minimum power distortionless response beamformer, and prove to be superior with respect to that measure in certain settings. Simulations of a real-time scenario confirm the advantage of these filters as well as the usefulness of the performance measure.
Keywords: Adaptive matched filter, minimum variance distortionless response, beam forming, Capon beam former, linear filters, performance measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261142 A Study of Dynamic Clustering Method to Extend the Lifetime of Wireless Sensor Network
Authors: Wernhuar Tarng, Kun-Jie Huang, Li-Zhong Deng, Kun-Rong Hsie, Mingteh Chen
Abstract:
In recent years, the research in wireless sensor network has increased steadily, and many studies were focusing on reducing energy consumption of sensor nodes to extend their lifetimes. In this paper, the issue of energy consumption is investigated and two adaptive mechanisms are proposed to extend the network lifetime. This study uses high-energy-first scheme to determine cluster heads for data transmission. Thus, energy consumption in each cluster is balanced and network lifetime can be extended. In addition, this study uses cluster merging and dynamic routing mechanisms to further reduce energy consumption during data transmission. The simulation results show that the proposed method can effectively extend the lifetime of wireless sensor network, and it is suitable for different base station locations.Keywords: Wireless sensor network, high-energy-first scheme, adaptive mechanisms, network lifetime
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421141 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering
Authors: Elizabeth B. Varghese, M. Wilscy
Abstract:
A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.
Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441140 Adaptive Digital Watermarking Integrating Fuzzy Inference HVS Perceptual Model
Authors: Sherin M. Youssef, Ahmed Abouelfarag, Noha M. Ghatwary
Abstract:
An adaptive Fuzzy Inference Perceptual model has been proposed for watermarking of digital images. The model depends on the human visual characteristics of image sub-regions in the frequency multi-resolution wavelet domain. In the proposed model, a multi-variable fuzzy based architecture has been designed to produce a perceptual membership degree for both candidate embedding sub-regions and strength watermark embedding factor. Different sizes of benchmark images with different sizes of watermarks have been applied on the model. Several experimental attacks have been applied such as JPEG compression, noises and rotation, to ensure the robustness of the scheme. In addition, the model has been compared with different watermarking schemes. The proposed model showed its robustness to attacks and at the same time achieved a high level of imperceptibility.Keywords: Watermarking, The human visual system (HVS), Fuzzy Inference System (FIS), Local Binary Pattern (LBP), Discrete Wavelet Transform (DWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18201139 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model
Authors: Chaudhuri Manoj Kumar Swain, Susmita Das
Abstract:
This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.
Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7121138 An Efficient Adaptive Thresholding Technique for Wavelet Based Image Denoising
Authors: D.Gnanadurai, V.Sadasivam
Abstract:
This frame work describes a computationally more efficient and adaptive threshold estimation method for image denoising in the wavelet domain based on Generalized Gaussian Distribution (GGD) modeling of subband coefficients. In this proposed method, the choice of the threshold estimation is carried out by analysing the statistical parameters of the wavelet subband coefficients like standard deviation, arithmetic mean and geometrical mean. The noisy image is first decomposed into many levels to obtain different frequency bands. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum thresholding value by the proposed method. Experimental results on several test images by using this method show that this method yields significantly superior image quality and better Peak Signal to Noise Ratio (PSNR). Here, to prove the efficiency of this method in image denoising, we have compared this with various denoising methods like wiener filter, Average filter, VisuShrink and BayesShrink.Keywords: Wavelet Transform, Gaussian Noise, ImageDenoising, Filter Banks and Thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29121137 The Impact of Governance on Happiness: Evidence from Quantile Regressions
Authors: Chiung-Ju Huang
Abstract:
This study utilizes the quantile regression analysis to examine the impact of governance (including democratic quality and technical quality) on happiness in 101 countries worldwide, classified as “developed countries” and “developing countries”. The empirical results show that the impact of democratic quality and technical quality on happiness is significantly positive for “developed countries”, while is insignificant for “developing countries”. The results suggest that the authorities in developed countries can enhance the level of individual happiness by means of improving the democracy quality and technical quality. However, for developing countries, promoting the quality of governance in order to enhance the level of happiness may not be effective. Policy makers in developed countries may pay more attention on increasing real GDP per capita instead of promoting the quality of governance to enhance individual happiness.
Keywords: Governance, happiness, multiple regression, quantile regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17051136 Opportunistic Routing with Secure Coded Wireless Multicast Using MAS Approach
Authors: E. Golden Julie, S. Tamil Selvi, Y. Harold Robinson
Abstract:
Many Wireless Sensor Network (WSN) applications necessitate secure multicast services for the purpose of broadcasting delay sensitive data like video files and live telecast at fixed time-slot. This work provides a novel method to deal with end-to-end delay and drop rate of packets. Opportunistic Routing chooses a link based on the maximum probability of packet delivery ratio. Null Key Generation helps in authenticating packets to the receiver. Markov Decision Process based Adaptive Scheduling algorithm determines the time slot for packet transmission. Both theoretical analysis and simulation results show that the proposed protocol ensures better performance in terms of packet delivery ratio, average end-to-end delay and normalized routing overhead.
Keywords: Delay-sensitive data, Markovian Decision Process based Adaptive Scheduling, Opportunistic Routing, Digital Signature authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19601135 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK
Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts
Abstract:
The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.
Keywords: Heavy metals, GIS, multivariate analysis, geoaccumulation index, enrichment factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12471134 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs
Authors: Mahmood Reza Shakarami, Reza Sedaghati
Abstract:
Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.
Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20201133 Simulation of Dynamics of a Permanent Magnet Linear Actuator
Authors: Ivan Yatchev, Ewen Ritchie
Abstract:
Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first a set of static magnetic filed analysis is carried out and then the electric circuit and mechanical motion equations are solved employing bi-cubic spline approximations of the field analysis results. The results show that the proposed decoupled model is of satisfactory accuracy and gives more flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads.Keywords: Coupled problems, dynamic models, finite elementanalysis, linear actuators, permanent magnets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27641132 Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer
Authors: S.M. Bahri, F.T. Bendimerad
Abstract:
We propose a downlink multiple-input multipleoutput (MIMO) multi-carrier code division multiple access (MCCDMA) system with adaptive beamforming algorithm for smart antennas. The algorithm used in this paper is based on the Least Mean Square (LMS), with pilot channel estimation (PCE) and the zero forcing equalizer (ZFE) in the receiver, requiring reference signal and no knowledge channel. MC-CDMA is studied in a multiple antenna context in order to efficiently exploit robustness against multipath effects and multi-user flexibility of MC-CDMA and channel diversity offered by MIMO systems for radio mobile channels. Computer simulations, considering multi-path Rayleigh Fading Channel, interference inter symbol and interference are presented to verify the performance. Simulation results show that the scheme achieves good performance in a multi-user system.Keywords: Adaptive Beamforming, LMS Algorithm, MCCDMA, MIMO System, Smart Antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18381131 Fuzzy Sliding Mode Control of an MR Mount for Vibration Attenuation
Authors: Jinsiang Shaw, Ray Pan, Yin-Chieh Chang
Abstract:
In this paper, an magnetorheological (MR) mount with fuzzy sliding mode controller (FSMC) is studied for vibration suppression when the system is subject to base excitations. In recent years, magnetorheological fluids are becoming a popular material in the field of the semi-active control. However, the dynamic equation of an MR mount is highly nonlinear and it is difficult to identify. FSMC provides a simple method to achieve vibration attenuation of the nonlinear system with uncertain disturbances. This method is capable of handling the chattering problem of sliding mode control effectively and the fuzzy control rules are obtained by using the Lyapunov stability theory. The numerical simulations using one-dimension and two-dimension FSMC show effectiveness of the proposed controller for vibration suppression. Further, the well-known skyhook control scheme and an adaptive sliding mode controller are also included in the simulation for comparison with the proposed FSMC.Keywords: adaptive sliding mode controller, fuzzy sliding modecontroller, magnetorheological mount, skyhook control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17981130 Simultaneous Term Structure Estimation of Hazard and Loss Given Default with a Statistical Model using Credit Rating and Financial Information
Authors: Tomohiro Ando, Satoshi Yamashita
Abstract:
The objective of this study is to propose a statistical modeling method which enables simultaneous term structure estimation of the risk-free interest rate, hazard and loss given default, incorporating the characteristics of the bond issuing company such as credit rating and financial information. A reduced form model is used for this purpose. Statistical techniques such as spline estimation and Bayesian information criterion are employed for parameter estimation and model selection. An empirical analysis is conducted using the information on the Japanese bond market data. Results of the empirical analysis confirm the usefulness of the proposed method.Keywords: Empirical Bayes, Hazard term structure, Loss given default.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16701129 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modeling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modeling tool and Means End Analysis, that adopts primitive concepts for modeling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.
Keywords: Adaptive Courseware, Early Requirement Engineering, Means End Analysis, Organizational Modeling, Requirement Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491128 A New Self-Adaptive EP Approach for ANN Weights Training
Authors: Kristina Davoian, Wolfram-M. Lippe
Abstract:
Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18301127 Non-Methane Hydrocarbons Emission during the Photocopying Process
Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Kecić S. Vesna, Oros B. Ivana
Abstract:
Prosperity of electronic equipment in photocopying environment not only has improved work efficiency, but also has changed indoor air quality. Considering the number of photocopying employed, indoor air quality might be worse than in general office environments. Determining the contribution from any type of equipment to indoor air pollution is a complex matter. Non-methane hydrocarbons are known to have an important role on air quality due to their high reactivity. The presence of hazardous pollutants in indoor air has been detected in one photocopying shop in Novi Sad, Serbia. Air samples were collected and analyzed for five days, during 8-hr working time in three time intervals, whereas three different sampling points were determined. Using multiple linear regression model and software package STATISTICA 10 the concentrations of occupational hazards and microclimates parameters were mutually correlated. Based on the obtained multiple coefficients of determination (0.3751, 0.2389 and 0.1975), a weak positive correlation between the observed variables was determined. Small values of parameter F indicated that there was no statistically significant difference between the concentration levels of nonmethane hydrocarbons and microclimates parameters. The results showed that variable could be presented by the general regression model: y = b0 + b1xi1+ b2xi2. Obtained regression equations allow to measure the quantitative agreement between the variables and thus obtain more accurate knowledge of their mutual relations.Keywords: Indoor air quality, multiple regression analysis, nonmethane hydrocarbons, photocopying process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771126 A Robust LS-SVM Regression
Authors: József Valyon, Gábor Horváth
Abstract:
In comparison to the original SVM, which involves a quadratic programming task; LS–SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost. Another problem is that LS-SVM is only optimal if the training samples are corrupted by Gaussian noise. In Least Squares SVM (LS–SVM), the nonlinear solution is obtained, by first mapping the input vector to a high dimensional kernel space in a nonlinear fashion, where the solution is calculated from a linear equation set. In this paper a geometric view of the kernel space is introduced, which enables us to develop a new formulation to achieve a sparse and robust estimate.Keywords: Support Vector Machines, Least Squares SupportVector Machines, Regression, Sparse approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20661125 Acute Coronary Syndrome Prediction Using Data Mining Techniques- An Application
Authors: Tahseen A. Jilani, Huda Yasin, Madiha Yasin, C. Ardil
Abstract:
In this paper we use data mining techniques to investigate factors that contribute significantly to enhancing the risk of acute coronary syndrome. We assume that the dependent variable is diagnosis – with dichotomous values showing presence or absence of disease. We have applied binary regression to the factors affecting the dependent variable. The data set has been taken from two different cardiac hospitals of Karachi, Pakistan. We have total sixteen variables out of which one is assumed dependent and other 15 are independent variables. For better performance of the regression model in predicting acute coronary syndrome, data reduction techniques like principle component analysis is applied. Based on results of data reduction, we have considered only 14 out of sixteen factors.
Keywords: Acute coronary syndrome (ACS), binary logistic regression analyses, myocardial ischemia (MI), principle component analysis, unstable angina (U.A.).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171124 New Regression Model and I-Kaz Method for Online Cutting Tool Wear Monitoring
Authors: Jaharah A. Ghani, Muhammad Rizal, Ahmad Sayuti, Mohd Zaki Nuawi, Mohd Nizam Ab. Rahman, Che Hassan Che Haron
Abstract:
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals using the regression model and I-kaz method. The detection of tool wear was done automatically using the in-house developed regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out on a CNC turning machine Colchester Master Tornado T4 in dry cutting condition, and Kistler 9255B dynamometer was used to measure the cutting force signals, which then stored and displayed in the DasyLab software. The progression of the cutting tool flank wear land (VB) was indicated by the amount of the cutting force generated. Later, the I-kaz was used to analyze all the cutting force signals from beginning of the cut until the rejection stage of the cutting tool. Results of the IKaz analysis were represented by various characteristic of I-kaz 3D coefficient and 3D graphic presentation. The I-kaz 3D coefficient number decreases when the tool wear increases. This method can be used for real time tool wear monitoring.Keywords: mathematical model, I-kaz method, tool wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24031123 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.
Keywords: Artificial neural network, competitive dynamics, logistic regression, text classification, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5391122 Knowledge Representation Based On Interval Type-2 CFCM Clustering
Authors: Myung-Won Lee, Keun-Chang Kwak
Abstract:
This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.
Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26211121 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots
Authors: Baoshan Wei, Shuai Han, Xing Zhang
Abstract:
Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13051120 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix
Authors: Tao Dai, Andy Adler, Behnam Shahrrava
Abstract:
This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.
Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16341119 An Adaptive Hand-Talking System for the Hearing Impaired
Authors: Zhou Yu, Jiang Feng
Abstract:
An adaptive Chinese hand-talking system is presented in this paper. By analyzing the 3 data collecting strategies for new users, the adaptation framework including supervised and unsupervised adaptation methods is proposed. For supervised adaptation, affinity propagation (AP) is used to extract exemplar subsets, and enhanced maximum a posteriori / vector field smoothing (eMAP/VFS) is proposed to pool the adaptation data among different models. For unsupervised adaptation, polynomial segment models (PSMs) are used to help hidden Markov models (HMMs) to accurately label the unlabeled data, then the "labeled" data together with signerindependent models are inputted to MAP algorithm to generate signer-adapted models. Experimental results show that the proposed framework can execute both supervised adaptation with small amount of labeled data and unsupervised adaptation with large amount of unlabeled data to tailor the original models, and both achieve improvements on the performance of recognition rate.Keywords: sign language recognition, signer adaptation, eMAP/VFS, polynomial segment model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760