Search results for: fuzzy control systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7872

Search results for: fuzzy control systems

7332 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
7331 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems

Authors: Dong Sang Yoo

Abstract:

We consider nonlinear uncertain systems such that a  priori information of the uncertainties is not available. For such  systems, we assume that the upper bound of the uncertainties is  represented as a Fredholm integral equation of the first kind and we  propose an adaptation law that is capable of estimating the upper  bound and design a continuous robust control which renders nonlinear  uncertain systems ultimately bounded.

 

Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
7330 Strict Stability of Fuzzy Differential Equations with Impulse Effect

Authors: Sanjay K.Srivastava, Bhanu Gupta

Abstract:

In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.

Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
7329 Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

Authors: A. Sivakumar, S. S. Darun Prakash, P. Navaneethakrishnan

Abstract:

In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.

Keywords: Break Even Point, Fuzzy Crisp Data, Fuzzy Sets, Productivity, Productivity Cycle, Total Productive Maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
7328 Iris Localization using Circle and Fuzzy Circle Detection Method

Authors: Marzieh. Savoj, S. Amirhassan. Monadjemi

Abstract:

Iris localization is a very important approach in biometric identification systems. Identification process usually is implemented in three levels: iris localization, feature extraction, and pattern matching finally. Accuracy of iris localization as the first step affects all other levels and this shows the importance of iris localization in an iris based biometric system. In this paper, we consider Daugman iris localization method as a standard method, propose a new method in this field and then analyze and compare the results of them on a standard set of iris images. The proposed method is based on the detection of circular edge of iris, and improved by fuzzy circles and surface energy difference contexts. Implementation of this method is so easy and compared to the other methods, have a rather high accuracy and speed. Test results show that the accuracy of our proposed method is about Daugman method and computation speed of it is 10 times faster.

Keywords: Convolution, Edge detector filter, Fuzzy circle, Identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
7327 Order Penetration Point Location using Fuzzy Quadratic Programming

Authors: Hamed Rafiei, Masoud Rabbani

Abstract:

This paper addresses one of the most important issues have been considered in hybrid MTS/MTO production environments. To cope with the problem, a mathematical programming model is applied from a tactical point of view. The model is converted to a fuzzy goal programming model, because a degree of uncertainty is involved in hybrid MTS/MTO context. Finally, application of the proposed model in an industrial center is reported and the results prove the validity of the model.

Keywords: Fuzzy sets theory, Hybrid MTS/MTO, Order penetration point, Quadratic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
7326 The Leaves of a Tree

Authors: Zhu Jiaming, Yu Mengna

Abstract:

In this article, models based on quantitative analysis, physical geometry and regression analysis are established, by using analytic hierarchy process analysis, fuzzy cluster analysis, fuzzy photographic and data fitting. The reasons of various leaf shapes among different species and the differences between the leaf shapes on same tree have been solved by using software, such as Eviews, VB and Matlab. We also successfully estimate the leaf mass of a tree and the correlation with the tree profile.

Keywords: Leaf shape; Mass; Fuzzy cluster; Regression analysis; Eviews; Matlab

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
7325 Design of Adaptive Controller Based On Lyapunov Stability for a CSTR

Authors: S. Anbu, N. Jaya

Abstract:

Nonlinearity is the inherent characteristics of all the industrial processes. The Classical control approach used for a generation often fails to show better results particularly for non-linear systems and in the systems, whose parameters changes over a period of time for a variety of reasons. Alternatively, adaptive control strategies provide very good performance. The Model Reference Adaptive Control based on Lyapunov stability analysis and classical PI control strategies are designed and evaluated for Continuous Stirred Tank Reactor, which shows appreciable dynamic nonlinear characteristics.

Keywords: Adaptive Control, CSTR, Lyapunov stability, MRAS, PID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4465
7324 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
7323 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions

Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*

Abstract:

Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
7322 Optimization of Material Removal Rate in Electrical Discharge Machining Using Fuzzy Logic

Authors: Amit Kohli, Aashim Wadhwa, Tapan Virmani, Ujjwal Jain

Abstract:

The objective of present work is to stimulate the machining of material by electrical discharge machining (EDM) to give effect of input parameters like discharge current (Ip), pulse on time (Ton), pulse off time (Toff) which can bring about changes in the output parameter, i.e. material removal rate. Experimental data was gathered from die sinking EDM process using copper electrode and Medium Carbon Steel (AISI 1040) as work-piece. The rules of membership function (MF) and the degree of closeness to the optimum value of the MMR are within the upper and lower range of the process parameters. It was found that proposed fuzzy model is in close agreement with the experimental results. By Intelligent, model based design and control of EDM process parameters in this study will help to enable dramatically decreased product and process development cycle times.

Keywords: Electrical discharge Machining (EDM), Fuzzy Logic, Material removal rate (MRR), Membership functions (MF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751
7321 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering

Authors: Elizabeth B. Varghese, M. Wilscy

Abstract:

A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.

Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
7320 Project Selection by Using a Fuzzy TOPSIS Technique

Authors: M. Salehi, R. Tavakkoli-Moghaddam

Abstract:

Selection of a project among a set of possible alternatives is a difficult task that the decision maker (DM) has to face. In this paper, by using a fuzzy TOPSIS technique we propose a new method for a project selection problem. After reviewing four common methods of comparing investment alternatives (net present value, rate of return, benefit cost analysis and payback period) we use them as criteria in a TOPSIS technique. First we calculate the weight of each criterion by a pairwise comparison and then we utilize the improved TOPSIS assessment for the project selection.

Keywords: Fuzzy Theory, Pairwise Comparison, ProjectSelection, TOPSIS Technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
7319 GPI Observer-based Tracking Control and Synchronization of Chaotic Systems

Authors: Dangjun Zhao, Yongji Wang, Lei Liu

Abstract:

Based on general proportional integral (GPI) observers and sliding mode control technique, a robust control method is proposed for the master-slave synchronization of chaotic systems in the presence of parameter uncertainty and with partially measurable output signal. By using GPI observer, the master dynamics are reconstructed by the observations from a measurable output under the differential algebraic framework. Driven by the signals provided by GPI observer, a sliding mode control technique is used for the tracking control and synchronization of the master-slave dynamics. The convincing numerical results reveal the proposed method is effective, and successfully accommodate the system uncertainties, disturbances, and noisy corruptions.

Keywords: GPI observer, sliding mode control, master-slave synchronization, chaotic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
7318 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece

Authors: N. Samarinas, C. Evangelides, C. Vrekos

Abstract:

The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.

Keywords: Classification, fuzzy logic, tolerance relations, rainfall data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026
7317 Combing LCIA and Fuzzy Risk Assessment for Environmental Impact Assessment

Authors: Kevin Fong-Rey Liu, Cheng-Wu Chen, Ken Yeh, Han-Hsi Liang

Abstract:

Environmental impact assessment (EIA) is a procedure tool of environmental management for identifying, predicting, evaluating and mitigating the adverse effects of development proposals. EIA reports usually analyze how the amounts or concentrations of pollutants obey the relevant standards. Actually, many analytical tools can deepen the analysis of environmental impacts in EIA reports, such as life cycle assessment (LCA) and environmental risk assessment (ERA). Life cycle impact assessment (LCIA) is one of steps in LCA to introduce the causal relationships among environmental hazards and damage. Incorporating the LCIA concept into ERA as an integrated tool for EIA can extend the focus of the regulatory compliance of environmental impacts to determine of the significance of environmental impacts. Sometimes, when using integrated tools, it is necessary to consider fuzzy situations due to insufficient information; therefore, ERA should be generalized to fuzzy risk assessment (FRA). Finally, the use of the proposed methodology is demonstrated through the study case of the expansion plan of the world-s largest plastics processing factory.

Keywords: Fuzzy risk analysis, life cycle impact assessment, fuzzy logic, environmental impact assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
7316 Sensory Evaluation of the Selected Coffee Products Using Fuzzy Approach

Authors: M.A. Lazim, M. Suriani

Abstract:

Knowing consumers' preferences and perceptions of the sensory evaluation of drink products are very significant to manufacturers and retailers alike. With no appropriate sensory analysis, there is a high risk of market disappointment. This paper aims to rank the selected coffee products and also to determine the best of quality attribute through sensory evaluation using fuzzy decision making model. Three products of coffee drinks were used for sensory evaluation. Data were collected from thirty judges at a hypermarket in Kuala Terengganu, Malaysia. The judges were asked to specify their sensory evaluation in linguistic terms of the quality attributes of colour, smell, taste and mouth feel for each product and also the weight of each quality attribute. Five fuzzy linguistic terms represent the quality attributes were introduced prior analysing. The judgment membership function and the weights were compared to rank the products and also to determine the best quality attribute. The product of Indoc was judged as the first in ranking and 'taste' as the best quality attribute. These implicate the importance of sensory evaluation in identifying consumers- preferences and also the competency of fuzzy approach in decision making.

Keywords: fuzzy decision making, fuzzy linguistic, membership function, sensory evaluation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2782
7315 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming

Authors: Hadi Gholizadeh, Ali Tajdin

Abstract:

To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.

Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
7314 Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.

Keywords: Data Mining, Fuzzy Clustering, Relational Clustering, Medoid-Based Clustering, Cluster Analysis, Unsupervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
7313 A Fuzzy System to Analyze SIVD Diseases Using the Transcranial Magnetic Stimulation

Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana

Abstract:

The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia (SIVD) and to measure the effect of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.

Keywords: TMS, EMG, fuzzy logic, transcranial magnetic stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
7312 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
7311 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection

Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson

Abstract:

A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.

Keywords: Image processing, artificial neural network, anomaly detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
7310 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump

Authors: C. Patrascioiu, Cao Minh Ahn

Abstract:

The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.

Keywords: Distillation, absorption, heat pump, Unisim Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
7309 Fuzzy Approach for Ranking of Motor Vehicles Involved in Road Accidents

Authors: Lazim Abdullah, N orhanadiah Zam

Abstract:

Increasing number of vehicles and lack of awareness among road users may lead to road accidents. However no specific literature was found to rank vehicles involved in accidents based on fuzzy variables of road users. This paper proposes a ranking of four selected motor vehicles involved in road accidents. Human and non-human factors that normally linked with road accidents are considered for ranking. The imprecision or vagueness inherent in the subjective assessment of the experts has led the application of fuzzy sets theory to deal with ranking problems. Data in form of linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. The Multi Criteria Decision Making, fuzzy TOPSIS was applied in computational procedures. From the analysis, it shows that motorcycles vehicles yielded the highest closeness coefficient at 0.6225. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the motorcycles recorded the first rank.

Keywords: Road accidents, decision making, closeness coefficient, fuzzy number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
7308 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference

Authors: Ayman A. Aly, Abdallah A. Alshnnaway

Abstract:

The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.

Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
7307 Improved BEENISH Protocol for Wireless Sensor Networks Based Upon Fuzzy Inference System

Authors: Rishabh Sharma, Renu Vig, Neeraj Sharma

Abstract:

The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.

Keywords: Wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483
7306 Stability Analysis of Impulsive Stochastic Fuzzy Cellular Neural Networks with Time-varying Delays and Reaction-diffusion Terms

Authors: Xinhua Zhang, Kelin Li

Abstract:

In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy neural networks with timevarying delays and reaction-diffusion is considered. By utilizing suitable Lyapunov-Krasovskii funcational, the inequality technique and stochastic analysis technique, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive stochastic fuzzy cellular neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of fuzzy neural networks. An example is given to show the effectiveness of the obtained results.

Keywords: Exponential stability, stochastic fuzzy cellular neural networks, time-varying delays, impulses, reaction-diffusion terms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
7305 Micropower Fuzzy Linguistic-Hedges Circuit in Current-Mode Approach

Authors: E. Farshidi

Abstract:

In this paper, based on a novel synthesis, a set of new simplified circuit design to implement the linguistic-hedge operations for adjusting the fuzzy membership function set is presented. The circuits work in current-mode and employ floating-gate MOS (FGMOS) transistors that operate in weak inversion region. Compared to the other proposed circuits, these circuits feature severe reduction of the elements number, low supply voltage (0.7V), low power consumption (<200nW), immunity from body effect and wide input dynamic range (>60dB). In this paper, a set of fuzzy linguistic hedge circuits, including absolutely, very, much more, more, plus minus, more or less and slightly, has been implemented in 0.18 mm CMOS process. Simulation results by Hspice confirm the validity of the proposed design technique and show high performance of the circuits.

Keywords: Current-mode, Linguistic-Hedge, Fuzzy Logic, lowpower

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
7304 A Trust Model using Fuzzy Logic in Wireless Sensor Network

Authors: Tae Kyung Kim, Hee Suk Seo

Abstract:

Adapting various sensor devices to communicate within sensor networks empowers us by providing range of possibilities. The sensors in sensor networks need to know their measurable belief of trust for efficient and safe communication. In this paper, we suggested a trust model using fuzzy logic in sensor network. Trust is an aggregation of consensus given a set of past interaction among sensors. We applied our suggested model to sensor networks in order to show how trust mechanisms are involved in communicating algorithm to choose the proper path from source to destination.

Keywords: Fuzzy, Sensor Networks, Trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3556
7303 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects

Authors: Preeda Sansakorn, Min An

Abstract:

In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.

Keywords: Safety risks assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345