Search results for: Exploratory data message
7136 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems
Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu
Abstract:
Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.
Keywords: Agent communication, introspective agent, isolation of agent, policy enforcement system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6457135 Zero Truncated Strict Arcsine Model
Authors: Y. N. Phang, E. F. Loh
Abstract:
The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.
Keywords: Hurdle models, maximum likelihood estimation method, positive count data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18577134 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.
Keywords: Communication, LED, Li-Fi, Wi-Fi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21717133 Business Rules for Data Warehouse
Authors: Rajeev Kaula
Abstract:
Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.Keywords: Business Rules, Data warehouse, PL/SQL ServerPages, Relational model, Web Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29857132 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System
Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu
Abstract:
Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.Keywords: Communication, satellite, data relay system, coverage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14167131 An Efficient Approach to Mining Frequent Itemsets on Data Streams
Authors: Sara Ansari, Mohammad Hadi Sadreddini
Abstract:
The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.Keywords: Data stream, frequent itemset, stream mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14207130 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7447129 AnQL: A Query Language for Annotation Documents
Authors: Neerja Bhatnagar, Ben A. Juliano, Renee S. Renner
Abstract:
This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.
Keywords: Annotation query language, data annotations, data annotation models, semantic data annotations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18477128 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5697127 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: Instance selection, data reduction, MapReduce, kNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10187126 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted
Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova
Abstract:
The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.
Keywords: Communication protocol, transmission optimization, data acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18217125 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17467124 MC and IC – What Is the Relationship?
Authors: O. V. Missioura
Abstract:
MC (Management Control)& IC (Internal Control) – what is the relationship? (an empirical study into the definitions between MC and IC) based on the wider considerations of Internal Control and Management Control terms, attention is focused not only on the financial aspects but also more on the soft aspects of the business, such as culture, behaviour, standards and values. The limited considerations of Management Control are focused mainly in the hard, financial aspects of business operation. The definitions of Management Control and Internal Control are often used interchangeably and the results of this empirical study reveal that Management Control is part of Internal Control, there is no causal link between the two concepts. Based on the interpretation of the respondents, the term Management Control has moved from a broad term to a more limited term with the soft aspects of the influencing of behaviour, performance measurements, incentives and culture. This paper is an exploratory study based on qualitative research and on a qualitative matrix method analysis of the thematic definition of the terms Management Control and Internal Control.
Keywords: Management Control (MC), Internal Control (IC), definition, causal link, COSO 1992/2004, CoCo (Canadian Institute of Chartered Accountants), Russian CG code (КОДЕКС) , limited and broad concepts MC and IC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17917123 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: Colour data, local stereo matching, stereo correspondence, disparity map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9177122 Flexible, Adaptable and Scaleable Business Rules Management System for Data Validation
Authors: Kashif Kamran, Farooque Azam
Abstract:
The policies governing the business of any organization are well reflected in her business rules. The business rules are implemented by data validation techniques, coded during the software development process. Any change in business policies results in change in the code written for data validation used to enforce the business policies. Implementing the change in business rules without changing the code is the objective of this paper. The proposed approach enables users to create rule sets at run time once the software has been developed. The newly defined rule sets by end users are associated with the data variables for which the validation is required. The proposed approach facilitates the users to define business rules using all the comparison operators and Boolean operators. Multithreading is used to validate the data entered by end user against the business rules applied. The evaluation of the data is performed by a newly created thread using an enhanced form of the RPN (Reverse Polish Notation) algorithm.Keywords: Business Rules, data validation, multithreading, Reverse Polish Notation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22717121 KM Practices in Service SMEs
Authors: K. Cormican, G. Coppola, S. Farina
Abstract:
Knowledge management is a critical component of competitive success in service organizations. Knowledge management centers on creating new knowledge and utilizing existing knowledge. While utilizing existing knowledge relates to input and control and can lead to a reduction in costs; creating new knowledge relates to output and growth and can lead to an increase in revenue. Therefore managers must ensure that they can successfully optimize the knowledge and talent in their organizations. To do this they and must try to develop an environment that promotes the generation, acquisition, transfer and use of valuable knowledge in creative ways. However knowledge management is complex and diverse. Research suggests that organizations in general and SMEs in particular are finding it difficult to implement successful knowledge management initiatives. Our research attempts to understand whether organizations are adopting best practice initiatives in their organizations. This paper presents findings from an exploratory study of 139 SMEs operating in the tourism sector across Europe. The goals of the survey is to assess the level of awareness of knowledge and talent management strategies and methodologies and to determine whether the responding companies implement best practice knowledge management initiatives in their organizations Analysis of the findings from the study are presented and discussed.Keywords: service sector, small enterprise, success factors, survey
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16147120 Tidal Data Analysis using ANN
Authors: Ritu Vijay, Rekha Govil
Abstract:
The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.Keywords: ANN, RBF, Tidal Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16567119 Spatial Data Mining by Decision Trees
Authors: S. Oujdi, H. Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.
Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29867118 Affine Projection Algorithm with Variable Data-Reuse Factor
Authors: ChangWoo Lee, Young Kow Lee, Sung Jun Ban, SungHoo Choi, Sang Woo Kim
Abstract:
This paper suggests a new Affine Projection (AP) algorithm with variable data-reuse factor using the condition number as a decision factor. To reduce computational burden, we adopt a recently reported technique which estimates the condition number of an input data matrix. Several simulations show that the new algorithm has better performance than that of the conventional AP algorithm.
Keywords: Affine projection algorithm, variable data-reuse factor, condition number, convergence rate, misalignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15457117 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization
Authors: Hironori Karachi, Haruka Yamashita
Abstract:
Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.
Keywords: Data science, non-negative matrix factorization, missing data, quality of services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4567116 Using Data Mining for Learning and Clustering FCM
Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian
Abstract:
Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20167115 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching
Authors: Angel Daniel Muñoz Guzmán
Abstract:
E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.Keywords: Student, experience, e-learning, e-teaching, e-tools, technology, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7587114 Modeling Low Voltage Power Line as a Data Communication Channel
Authors: Eklas Hossain, Sheroz Khan, Ahad Ali
Abstract:
Power line communications may be used as a data communication channel in public and indoor distribution networks so that it does not require the installing of new cables. Industrial low voltage distribution network may be utilized for data transfer required by the on-line condition monitoring of electric motors. This paper presents a pilot distribution network for modeling low voltage power line as data transfer channel. The signal attenuation in communication channels in the pilot environment is presented and the analysis is done by varying the corresponding parameters for the signal attenuation.Keywords: Data communication, indoor distribution networks, low voltage, power line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32847113 Generating Concept Trees from Dynamic Self-organizing Map
Authors: Norashikin Ahmad, Damminda Alahakoon
Abstract:
Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study.
Keywords: dynamic self-organizing map, concept formation, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14607112 Optical Fiber Data Throughput in a Quantum Communication System
Authors: Arash Kosari, Ali Araghi
Abstract:
A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.Keywords: Absorption, data throughput, depolarization, optical fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16857111 Fuzzy Clustering of Categorical Attributes and its Use in Analyzing Cultural Data
Authors: George E. Tsekouras, Dimitris Papageorgiou, Sotiris Kotsiantis, Christos Kalloniatis, Panagiotis Pintelas
Abstract:
We develop a three-step fuzzy logic-based algorithm for clustering categorical attributes, and we apply it to analyze cultural data. In the first step the algorithm employs an entropy-based clustering scheme, which initializes the cluster centers. In the second step we apply the fuzzy c-modes algorithm to obtain a fuzzy partition of the data set, and the third step introduces a novel cluster validity index, which decides the final number of clusters.
Keywords: Categorical data, cultural data, fuzzy logic clustering, fuzzy c-modes, cluster validity index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17097110 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.
Keywords: Data grid, data replication, simulation, replica selection, replica placement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21107109 A Proposal of an Automatic Formatting Method for Transforming XML Data
Authors: Zhe JIN, Motomichi TOYAMA
Abstract:
PPX(Pretty Printer for XML) is a query language that offers a concise description method of formatting the XML data into HTML. In this paper, we propose a simple specification of formatting method that is a combination description of automatic layout operators and variables in the layout expression of the GENERATE clause of PPX. This method can automatically format irregular XML data included in a part of XML with layout decision rule that is referred to DTD. In the experiment, a quick comparison shows that PPX requires far less description compared to XSLT or XQuery programs doing same tasks.
Keywords: PPX, Irregular XML data, Layout decision rule, HTML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14187108 Data Mining in Oral Medicine Using Decision Trees
Authors: Fahad Shahbaz Khan, Rao Muhammad Anwer, Olof Torgersson, Göran Falkman
Abstract:
Data mining has been used very frequently to extract hidden information from large databases. This paper suggests the use of decision trees for continuously extracting the clinical reasoning in the form of medical expert-s actions that is inherent in large number of EMRs (Electronic Medical records). In this way the extracted data could be used to teach students of oral medicine a number of orderly processes for dealing with patients who represent with different problems within the practice context over time.Keywords: Data mining, Oral Medicine, Decision Trees, WEKA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25017107 An Efficient Data Collection Approach for Wireless Sensor Networks
Authors: Hanieh Alipour, Alireza Nemaney Pour
Abstract:
One of the most important applications of wireless sensor networks is data collection. This paper proposes as efficient approach for data collection in wireless sensor networks by introducing Member Forward List. This list includes the nodes with highest priority for forwarding the data. When a node fails or dies, this list is used to select the next node with higher priority. The benefit of this node is that it prevents the algorithm from repeating when a node fails or dies. The results show that Member Forward List decreases power consumption and latency in wireless sensor networks.Keywords: Data Collection, Wireless Sensor Network, SensorNode, Tree-Based
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408