Search results for: Bayesian network; structure learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6847

Search results for: Bayesian network; structure learning

6307 Categorization and Estimation of Relative Connectivity of Genes from Meta-OFTEN Network

Authors: U. Kairov, T. Karpenyuk, E. Ramanculov, A. Zinovyev

Abstract:

The most common result of analysis of highthroughput data in molecular biology represents a global list of genes, ranked accordingly to a certain score. The score can be a measure of differential expression. Recent work proposed a new method for selecting a number of genes in a ranked gene list from microarray gene expression data such that this set forms the Optimally Functionally Enriched Network (OFTEN), formed by known physical interactions between genes or their products. Here we present calculation results of relative connectivity of genes from META-OFTEN network and tentative biological interpretation of the most reproducible signal. The relative connectivity and inbetweenness values of genes from META-OFTEN network were estimated.

Keywords: Microarray, META-OFTEN, gene network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
6306 An Enhanced Associativity Based Routing with Fuzzy Based Trust to Mitigate Network Attacks

Authors: K. Geetha, P. Thangaraj

Abstract:

Mobile Ad Hoc Networks (MANETs) is a collection of mobile devices forming a communication network without infrastructure. MANET is vulnerable to security threats due to network’s limited security, dynamic topology, scalability and the lack of central management. The Quality of Service (QoS) routing in such networks is limited by network breakage caused by node mobility or nodes energy depletions. The impact of node mobility on trust establishment is considered and its use to propagate trust through a network is investigated in this paper. This work proposes an enhanced Associativity Based Routing (ABR) with Fuzzy based Trust (Fuzzy- ABR) routing protocol for MANET to improve QoS and to mitigate network attacks.

Keywords: Mobile Ad hoc Networks (MANET), Associativity Based Routing (ABR), Fuzzy based Computed Trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
6305 Design of Ultra Fast Polymer Electro-Optic waveguide Switch for Intelligent Optical Networks

Authors: S.Ponmalar, S.Sundaravadivelu

Abstract:

Traditional optical networks are gradually evolving towards intelligent optical networks due to the need for faster bandwidth provisioning, protection and restoration of the network that can be accomplished with devices like optical switch, add drop multiplexer and cross connects. Since dense wavelength multiplexing forms the physical layer for intelligent optical networking, the roll of high speed all optical switch is important. This paper analyzes such an ultra-high speed polymer electro-optic switch. The performances of the 2x2 optical waveguide switch with rectangular, triangular and trapezoidal grating profiles on various device parameters are analyzed. The simulation result shows that trapezoidal grating is the optimized structure which has the coupling length of 81μm and switching voltage of 11V for the operating wavelength of 1550nm. The switching time for this proposed switch is 0.47 picosecond. This makes the proposed switch to be an important element in the intelligent optical network.

Keywords: Intelligent optical network, optical switch, electrooptic effect, coupled mode theory, waveguide grating structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
6304 Collaborative E-Learning with Multiple Imaginary Co-Learner: Design, Issues and Implementation

Authors: Melvin Ballera, Mosbah Mohamed Elssaedi, Ahmed Khalil Zohdy

Abstract:

Collaborative problem solving in e-learning can take in the form of discussion among learner, creating a highly social learning environment and characterized by participation and interactivity. This paper, designed a collaborative learning environment where agent act as co-learner, can play different roles during interaction. Since different roles have been assigned to the agent, learner will assume that multiple co-learner exists to help and guide him all throughout the collaborative problem solving process, but in fact, alone during the learning process. Specifically, it answers the questions what roles of the agent should be incorporated to contribute better learning outcomes, how agent will facilitate the communication process to provide social learning and interactivity and what are the specific instructional strategies that facilitate learner participation, increased skill acquisition and develop critical thinking.

Keywords: Collaborative e-learning, collaborative problem solving, , imaginary co-learner, social learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
6303 Services-Oriented Model for the Regulation of Learning

Authors: Mohamed Bendahmane, Brahim Elfalaki, Mohammed Benattou

Abstract:

One of the major sources of learners' professional difficulties is their heterogeneity. Whether on cognitive, social, cultural or emotional level, learners being part of the same group have many differences. These differences do not allow to apply the same learning process at all learners. Thus, an optimal learning path for one, is not necessarily the same for the other. We present in this paper a model-oriented service to offer to each learner a personalized learning path to acquire the targeted skills.

Keywords: Service-oriented architecture, learning path, web service, personalization, trace analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
6302 Quality and Quantity in the Strategic Network of Higher Education Institutions

Authors: Juha Kettunen

Abstract:

This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.

Keywords: Higher education, network, research and development, strategic management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
6301 Probabilistic Modeling of Network-induced Delays in Networked Control Systems

Authors: Manoj Kumar, A.K. Verma, A. Srividya

Abstract:

Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.

Keywords: NCS (networked control system), delay analysis, response-time distribution, worst-case delay, CAN, MIL-STD-1553B, redundancy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
6300 Methodology of the Energy Supply Disturbances Affecting Energy System

Authors: J. Augutis, R. Krikstolaitis, L. Martisauskas

Abstract:

Recently global concerns for the energy security have steadily been on the increase and are expected to become a major issue over the next few decades. Energy security refers to a resilient energy system. This resilient system would be capable of withstanding threats through a combination of active, direct security measures and passive or more indirect measures such as redundancy, duplication of critical equipment, diversity in fuel, other sources of energy, and reliance on less vulnerable infrastructure. Threats and disruptions (disturbances) to one part of the energy system affect another. The paper presents methodology in theoretical background about energy system as an interconnected network and energy supply disturbances impact to the network. The proposed methodology uses a network flow approach to develop mathematical model of the energy system network as the system of nodes and arcs with energy flowing from node to node along paths in the network.

Keywords: Energy Security, Energy Supply Disturbances, Modeling of Energy System, Network Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
6299 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks

Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng

Abstract:

Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.

Keywords: Biological molecular networks, essential genes, graph theory, network subgraphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
6298 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network

Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah

Abstract:

In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.

Keywords: Distributed generation photovoltaic, DG PV, optimal location, penetration level, sub-transmission network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
6297 Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula

Authors: Mohammed T. Taher, Usman Ghani, Ahmed S. Khan

Abstract:

This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies.

Keywords: Simulation-based teaching, hands-on learning, feedback-based learning, scaffolding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
6296 Integrated Learning in Engineering Services: A Conceptual Framework

Authors: Satya Pilla

Abstract:

This study explores how the mechanics of learning paves the way to engineering innovation. Theories related to learning in the new product/service innovation are reviewed from an organizational perspective, behavioral perspective, and engineering perspective. From this, an engineering team-s external interactions for knowledge brokering and internal composition for skill balance are examined from a learning and innovation viewpoints. As a result, an integrated learning model is developed by reconciling the theoretical perspectives as well as developing propositions that emphasize the centrality of learning, and its drivers, in the engineering product/service development. The paper also provides a review and partial validation of the propositions using the results of a previously published field study in the aerospace industry.

Keywords: Engineering Services, Integrated Learning, NewProduct Development, Service Innovation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
6295 Solar-Inducted Cluster Head Relocation Algorithm

Authors: Goran Djukanovic, Goran Popovic

Abstract:

A special area in the study of Wireless Sensor Networks (WSNs) is how to move sensor nodes, as it expands the scope of application of wireless sensors and provides new opportunities to improve network performance. On the other side, it opens a set of new problems, especially if complete clusters are mobile. Node mobility can prolong the network lifetime. In such WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. This paper presents an idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network reduces, and the lifetime of the network extends. Positioning of CHs is made in each round based on selfish herd hypothesis, where leader retreats to the center of gravity. Based on this idea, an algorithm, together with its modified version, has been presented and tested in this paper. Simulation results show that both algorithms have benefits in network lifetime, and prolongation of network stability period duration.

Keywords: CH-active algorithm, mobile cluster head, sensors, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
6294 A Comprehensive Survey and Comparative Analysis of Black Hole Attack in Mobile Ad Hoc Network

Authors: Nidhi Gupta, Sanjoy Das, Khushal Singh

Abstract:

A Mobile Ad-hoc Network (MANET) is a self managing network consists of versatile nodes that are capable of communicating with each other without having any fixed infrastructure. These nodes may be routers and/or hosts. Due to this dynamic nature of the network, routing protocols are vulnerable to various kinds of attacks. The black hole attack is one of the conspicuous security threats in MANETs. As the route discovery process is obligatory and customary, attackers make use of this loophole to get success in their motives to destruct the network. In Black hole attack the packet is redirected to a node that actually does not exist in the network. Many researchers have proposed different techniques to detect and prevent this type of attack. In this paper, we have analyzed various routing protocols in this context. Further we have shown a critical comparison among various protocols. We have shown various routing metrics are required proper and significant analysis of the protocol.

Keywords: Black Hole, MANET, Performance Parameters, Routing Protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
6293 Promoting Reflection through Action Learning in a 3D Virtual World

Authors: R.L. Sanders, L. McKeown

Abstract:

An international cooperation between educators in Australia and the US has led to a reconceptualization of the teaching of a library science course at Appalachian State University. The pedagogy of Action Learning coupled with a 3D virtual learning environment immerses students in a social constructivist learning space that incorporates and supports interaction and reflection. The intent of this study was to build a bridge between theory and practice by providing students with a tool set that promoted personal and social reflection, and created and scaffolded a community of practice. Besides, action learning is an educational process whereby the fifty graduate students experienced their own actions and experience to improve performance.

Keywords: action learning, action research, reflection, metacognition, virtual worlds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
6292 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: Alignment, RNA secondary structure, pairwise, component-based, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
6291 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: Text detection, CNN, PZM, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
6290 Detection of Moving Images Using Neural Network

Authors: P. Latha, L. Ganesan, N. Ramaraj, P. V. Hari Venkatesh

Abstract:

Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.

Keywords: Frame separation, Correlation Network, Neural network training, Radial Basis Function, object tracking, Motion Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
6289 Improvement of the Reliability of the Industrial Electric Networks

Authors: M. Bouguerra, I. Habi

Abstract:

The continuity in the electric supply of the electric installations is becoming one of the main requirements of the electric supply network (generation, transmission, and distribution of the electric energy). The achievement of this requirement depends from one side on the structure of the electric network and on the other side on the avaibility of the reserve source provided to maintain the supply in case of failure of the principal one. The avaibility of supply does not only depends on the reliability parameters of the both sources (principal and reserve) but it also depends on the reliability of the circuit breaker which plays the role of interlocking the reserve source in case of failure of the principal one. In addition, the principal source being under operation, its control can be ideal and sure, however, for the reserve source being in stop, a preventive maintenances which proceed on time intervals (periodicity) and for well defined lengths of time are envisaged, so that this source will always available in case of the principal source failure. The choice of the periodicity of preventive maintenance of the source of reserve influences directly the reliability of the electric feeder system In this work and on the basis of the semi- markovian's processes, the influence of the time of interlocking the reserve source upon the reliability of an industrial electric network is studied and is given the optimal time of interlocking the reserve source in case of failure the principal one, also the influence of the periodicity of the preventive maintenance of the source of reserve is studied and is given the optimal periodicity.

Keywords: Semi-Markovians processes, reliability, optimization, industrial electric network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
6288 Towards for Admission Control in WIMAX Relay Station Mesh Network for Mobile Stations out of Coverage Using Ad-Hoc

Authors: Anas Majeed, A. A. Zaidan, B. B. Zaidan, Laiha Mat Kiah

Abstract:

WIMAX relay station mesh network has been approved by IEEE 802.16j as a standard to provide a highly data rate transmission, the RS was implemented to extend the coverage zone of the BS, for instance the MSs previously were out of the coverage of the BS they become in the coverage of the RS, therefore these MSs can have Admission control from the BS through the RS. This paper describe a problem in the mesh network Relay station, for instance the problem of how to serve the mobile stations (MSs) which are out of the Relay station coverage. This paper also proposed a solution for mobile stations out of the coverage of the WIMAX Relay stations mesh Network. Therefore Ad-hoc network defined as a solution by using its admission control schema and apply it on the mobiles inside and outside the Relay station coverage.

Keywords: WIMAX, relay station, mesh network, ad-hoc, WiFi, generic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
6287 Project and Module Based Teaching and Learning

Authors: Jingyu Hou

Abstract:

This paper proposes a new teaching and learning approach-project and module based teaching and learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units. 

Keywords: Computer science education, project and module based, software engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3454
6286 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning

Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem

Abstract:

The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.

Keywords: Connectivism, data visualization, informal learning, learning analytics, semantic web, social web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
6285 Dynamic Threshold Adjustment Approach For Neural Networks

Authors: Hamza A. Ali, Waleed A. J. Rasheed

Abstract:

The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.

Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
6284 Extending E-learning systems based on Clause-Rule model

Authors: Keisuke Nakamura, Kiyoshi Akama, Hiroshi Mabuchi

Abstract:

E-Learning systems are used by many learners and teachers. The developer is developing the e-Learning system. However, the developer cannot do system construction to satisfy all of users- demands. We discuss a method of constructing e-Learning systems where learners and teachers can design, try to use, and share extending system functions that they want to use; which may be nally added to the system by system managers.

Keywords: Clause-Rule-Model, database-access, e-Learning, Web-Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
6283 Using Multimedia in Computer Based Learning (CBL) A Case Study: Teaching Science to Student

Authors: Maryam Honarmand

Abstract:

Regarding to the fast growth of computer, internet, and virtual learning in our country (Iran) and need computer-based learning systems and multimedia tools as an essential part of such education, designing and implementing such systems would help teach different field such as science. This paper describes the basic principle of multimedia. At the end, with a description of learning science to the infant students, the method of this system will be explained.

Keywords: Multimedia tools, computer based learning, science, student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
6282 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: Basketball, deep learning, feature extraction, single-camera, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
6281 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare

Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl

Abstract:

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

Keywords: Average run length, Bernoulli CUSUM chart, beta binomial posterior predictive distribution, clinical indicator, health care organization, highest posterior density interval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
6280 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
6279 Intelligent Neural Network Based STLF

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
6278 Denial of Service (DOS) Attack and Its Possible Solutions in VANET

Authors: Halabi Hasbullah, Irshad Ahmed Soomro, Jamalul-lail Ab Manan

Abstract:

Vehicular Ad-hoc Network (VANET) is taking more attention in automotive industry due to the safety concern of human lives on roads. Security is one of the safety aspects in VANET. To be secure, network availability must be obtained at all times since availability of the network is critically needed when a node sends any life critical information to other nodes. However, it can be expected that security attacks are likely to increase in the coming future due to more and more wireless applications being developed and deployed onto the well-known expose nature of the wireless medium. In this respect, the network availability is exposed to many types of attacks. In this paper, Denial of Service (DOS) attack on network availability is presented and its severity level in VANET environment is elaborated. A model to secure the VANET from the DOS attacks has been developed and some possible solutions to overcome the attacks have been discussed.

Keywords: Vehicular Ad hoc Network (VANET); security;availability; security attack; Denial of Service (DOS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6084