Search results for: holistic approach to teaching mathematics in secondary school
750 Lane Changing and Merging Maneuvers of Carlike Robots
Authors: Bibhya Sharma, Jito Vanualailai, Ravindra Rai
Abstract:
This research paper designs a unique motion planner of multiple platoons of nonholonomic car-like robots as a feasible solution to the lane changing/merging maneuvers. The decentralized planner with a leaderless approach and a path-guidance principle derived from the Lyapunov-based control scheme generates collision free avoidance and safe merging maneuvers from multiple lanes to a single lane by deploying a split/merge strategy. The fixed obstacles are the markings and boundaries of the road lanes, while the moving obstacles are the robots themselves. Real and virtual road lane markings and the boundaries of road lanes are incorporated into a workspace to achieve the desired formation and configuration of the robots. Convergence of the robots to goal configurations and the repulsion of the robots from specified obstacles are achieved by suitable attractive and repulsive potential field functions, respectively. The results can be viewed as a significant contribution to the avoidance algorithm of the intelligent vehicle systems (IVS). Computer simulations highlight the effectiveness of the split/merge strategy and the acceleration-based controllers.Keywords: Lane merging, Lyapunov-based control scheme, path-guidance principle, split/merge strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645749 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: EIoT, machine learning, anomaly detection, environment monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027748 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which cover the variety of figure proportions in both height and girth. 3,000 data have been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from the some states of India to produce the sizing system suitable for clothing manufacture and retailing. The data are used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from the large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: Anthropometric data, data mining, decision tree, garments manufacturing, ready-made garments, sizing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961747 Overall Stability of Welded Q460GJ Steel Box Columns: Experimental Study and Numerical Simulations
Authors: Zhou Xiong, Kang Shao Bo, Yang Bo
Abstract:
To date, high-performance structural steel has been widely used for columns in construction practices due to its significant advantages over conventional steel. However, the same design approach with conventional steel columns is still adopted in the design of high-performance steel columns. As a result, its superior properties cannot be fully considered in design. This paper conducts a test and finite element analysis on the overall stability behaviour of welded Q460GJ steel box columns. In the test, four steel columns with different slenderness and width-to-thickness ratio were compressed under an axial compression testing machine. And finite element models were established in which material nonlinearity and residual stress distributions of test columns were included. Then, comparisons were made between test results and finite element result, it showed that finite element analysis results are agree well with the test result. It means that the test and finite element model are reliable. Then, we compared the test result with the design value calculated by current code, the result showed that Q460GJ steel box columns have the higher overall buckling capacity than the design value. It is necessary to update the design curves for Q460GJ steel columns so that the overall stability capacity of Q460GJ box columns can be designed appropriately.
Keywords: Axial compression, Finite element analysis, Overall stability, Q460GJ steel, Welded box columns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861746 Determination and Assessment of Ground Motion and Spectral Parameters for Iran
Authors: G. Ghodrati Amiri, M. Khorasani, Razavian Ameri, M.Mohamadi Dehcheshmeh, S.Fathi
Abstract:
Many studies have been conducted for derivation of attenuation relationships worldwide, however few relationships have been developed to use for the seismic region of Iranian plateau and only few of these studies have been conducted for derivation of attenuation relationships for parameters such as uniform duration. Uniform duration is the total time during which the acceleration is larger than a given threshold value (default is 5% of PGA). In this study, the database was same as that used previously by Ghodrati Amiri et al. (2007) with same correction methods for earthquake records in Iran. However in this study, records from earthquakes with MS< 4.0 were excluded from this database, each record has individually filtered afterward, and therefore the dataset has been expanded. These new set of attenuation relationships for Iran are derived based on tectonic conditions with soil classification into rock and soil. Earthquake parameters were chosen to be hypocentral distance and magnitude in order to make it easier to use the relationships for seismic hazard analysis. Tehran is the capital city of Iran wit ha large number of important structures. In this study, a probabilistic approach has been utilized for seismic hazard assessment of this city. The resulting uniform duration against return period diagrams are suggested to be used in any projects in the area.Keywords: Attenuation Relationships, Iran, Probabilistic Seismic Hazard Analysis, Tehran, Uniform Duration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690745 Construction of Recombinant E.coli Expressing Fusion Protein to Produce 1,3-Propanediol
Authors: Rosarin Rujananon, Poonsuk Prasertsan, Amornrat Phongdara, Tanate Panrat, Jibin Sun, Sugima Rappert, An-Ping Zeng
Abstract:
In this study, a synthetic pathway was created by assembling genes from Clostridium butyricum and Escherichia coli in different combinations. Among the genes were dhaB1 and dhaB2 from C. butyricum VPI1718 coding for glycerol dehydratase (GDHt) and its activator (GDHtAc), respectively, involved in the conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA). The yqhD gene from E.coli BL21 was also included which codes for an NADPHdependent 1,3-propanediol oxidoreductase isoenzyme (PDORI) reducing 3-HPA to 1,3-propanediol (1,3-PD). Molecular modeling analysis indicated that the conformation of fusion protein of YQHD and DHAB1 was favorable for direct molecular channeling of the intermediate 3-HPA. According to the simulation results, the yqhD and dhaB1 gene were assembled in the upstream of dhaB2 to express a fusion protein, yielding the recombinant strain E. coliBL21 (DE3)//pET22b+::yqhD-dhaB1_dhaB2 (strain BP41Y3). Strain BP41Y3 gave 10-fold higher 1,3-PD concentration than E. coliBL21 (DE3)//pET22b+::yqhD-dhaB1_dhaB2 (strain BP31Y2) expressing the recombinant enzymes simultaneously but in a non-fusion mode. This is the first report using a gene fusion approach to enhance the biological conversion of glycerol to the value added compound 1,3- PD.Keywords: Recombinant E.coli, 1, 3-propanediol, glycerol, fusion protein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014744 Application of Computational Intelligence Techniques for Economic Load Dispatch
Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil
Abstract:
This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.
Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273743 System Identification with General Dynamic Neural Networks and Network Pruning
Authors: Christian Endisch, Christoph Hackl, Dierk Schröder
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937742 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials
Authors: Chongyang Ye, Rong Liu
Abstract:
Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.
Keywords: Elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417741 SLM Using Riemann Sequence Combined with DCT Transform for PAPR Reduction in OFDM Communication Systems
Authors: Pepin Magnangana Zoko Goyoro, Ibrahim James Moumouni, Sroy Abouty
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) is an efficient method of data transmission for high speed communication systems. However, the main drawback of OFDM systems is that, it suffers from the problem of high Peak-to-Average Power Ratio (PAPR) which causes inefficient use of the High Power Amplifier and could limit transmission efficiency. OFDM consist of large number of independent subcarriers, as a result of which the amplitude of such a signal can have high peak values. In this paper, we propose an effective reduction scheme that combines DCT and SLM techniques. The scheme is composed of the DCT followed by the SLM using the Riemann matrix to obtain phase sequences for the SLM technique. The simulation results show PAPR can be greatly reduced by applying the proposed scheme. In comparison with OFDM, while OFDM had high values of PAPR –about 10.4dB our proposed method achieved about 4.7dB reduction of the PAPR with low complexities computation. This approach also avoids randomness in phase sequence selection, which makes it simpler to decode at the receiver. As an added benefit, the matrices can be generated at the receiver end to obtain the data signal and hence it is not required to transmit side information (SI).Keywords: DCT transform, OFDM, PAPR, Riemann matrix, SLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640740 On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach
Authors: Sharif E. Guseynov, Jekaterina V. Aleksejeva, Janis S. Rimshans
Abstract:
A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.
Keywords: Porous media, filtering, permeability, elliptic PDE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755739 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network
Authors: Cheng Fang, Lingwei Quan, Cunyue Lu
Abstract:
Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.Keywords: Computer vision, Siamese network, pose estimation, pose tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165738 Representing Shared Join Points with State Charts: A High Level Design Approach
Authors: Muhammad Naveed, Muhammad Khalid Abdullah, Khalid Rashid, Hafiz Farooq Ahmad
Abstract:
Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.Keywords: Aspect Oriented Software Development, Shared Join Points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717737 Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects
Authors: M. Bayareh, S. Mortazavi
Abstract:
The migration of a deformable drop in simple shear flow at finite Reynolds numbers is investigated numerically by solving the full Navier-Stokes equations using a finite difference/front tracking method. The objectives of this study are to examine the effectiveness of the present approach to predict the migration of a drop in a shear flow and to investigate the behavior of the drop migration with different drop sizes and non-unity viscosity ratios. It is shown that the drop deformation depends strongly on the capillary number, so that; the proper non-dimensional number for the interfacial tension is the capillary number. The rate of migration increased with increasing the drop radius. In other words, the required time for drop migration to the centreline decreases. As the viscosity ratio increases, the drop rotates more slowly and the lubrication force becomes stronger. The increased lubrication force makes it easier for the drop to migrate to the centre of the channel. The migration velocity of the drop vanishes as the drop reaches the centreline under viscosity ratio of one and non-unity viscosity ratios. To validate the present calculations, some typical results are compared with available experimental and theoretical data.Keywords: drop migration, shear flow, front-tracking method, finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018736 Simulation of Snow Covers Area by a Physical based Model
Authors: Hossein Zeinivand, Florimond De Smedt
Abstract:
Snow cover is an important phenomenon in hydrology, hence modeling the snow accumulation and melting is an important issue in places where snowmelt significantly contributes to runoff and has significant effect on water balance. The physics-based models are invariably distributed, with the basin disaggregated into zones or grid cells. Satellites images provide valuable data to verify the accuracy of spatially distributed model outputs. In this study a spatially distributed physically based model (WetSpa) was applied to predict snow cover and melting in the Latyan dam watershed in Iran. Snowmelt is simulated based on an energy balance approach. The model is applied and calibrated with one year of observed daily precipitation, air temperature, windspeed, and daily potential evaporation. The predicted snow-covered area is compared with remotely sensed images (MODIS). The results show that simulated snow cover area SCA has a good agreement with satellite image snow cover area SCA from MODIS images. The model performance is also tested by statistical and graphical comparison of simulated and measured discharges entering the Latyan dam reservoir.Keywords: Physical based model, Satellite image, Snow covers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865735 An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria
Authors: Mauro Giacomini, Stefania Bertone, Federico Caneva Soumetz, Carmelina Ruggiero
Abstract:
Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.
Keywords: Cellular fatty acid methyl esters, environmental bacteria, gas-chromatography, unsupervised ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840734 Accurate Modeling and Nonlinear Finite Element Analysis of a Flexible-Link Manipulator
Authors: M. Pala Prasad Reddy, Jeevamma Jacob
Abstract:
Accurate dynamic modeling and analysis of flexible link manipulator (FLM) with non linear dynamics is very difficult due to distributed link flexibility and few studies have been conducted based on assumed modes method (AMM) and finite element models. In this paper a nonlinear dynamic model with first two elastic modes is derived using combined Euler/Lagrange and AMM approaches. Significant dynamics associated with the system such as hub inertia, payload, structural damping, friction at joints, combined link and joint flexibility are incorporated to obtain the complete and accurate dynamic model. The response of the FLM to the applied bang-bang torque input is compared against the models derived from LS-DYNA finite element discretization approach and linear finite element models. Dynamic analysis is conducted using LS-DYNA finite element model which uses the explicit time integration scheme to simulate the system. Parametric study is conducted to show the impact payload mass. A numerical result shows that the LS-DYNA model gives the smooth hub-angle profile.
Keywords: Flexible link manipulator, AMM, FEM, LS-DYNA, Bang-bang torque input.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915733 Intelligent Video-Based Monitoring of Freeway Traffic
Authors: Saad M. Al-Garni, Adel A. Abdennour
Abstract:
Freeways are originally designed to provide high mobility to road users. However, the increase in population and vehicle numbers has led to increasing congestions around the world. Daily recurrent congestion substantially reduces the freeway capacity when it is most needed. Building new highways and expanding the existing ones is an expensive solution and impractical in many situations. Intelligent and vision-based techniques can, however, be efficient tools in monitoring highways and increasing the capacity of the existing infrastructures. The crucial step for highway monitoring is vehicle detection. In this paper, we propose one of such techniques. The approach is based on artificial neural networks (ANN) for vehicles detection and counting. The detection process uses the freeway video images and starts by automatically extracting the image background from the successive video frames. Once the background is identified, subsequent frames are used to detect moving objects through image subtraction. The result is segmented using Sobel operator for edge detection. The ANN is, then, used in the detection and counting phase. Applying this technique to the busiest freeway in Riyadh (King Fahd Road) achieved higher than 98% detection accuracy despite the light intensity changes, the occlusion situations, and shadows.Keywords: Background Extraction, Neural Networks, VehicleDetection, Freeway Traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912732 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963731 Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode
Authors: Jiri Sebesta
Abstract:
Phase locked loops (PLL) and delay locked loops (DLL) play an important role in establishing coherent references (phase of carrier and symbol timing) in digital communication systems. Fully digital receiver including digital carrier synchronizer and symbol timing synchronizer fulfils the conditions for universal multi-mode communication receiver with option of symbol rate setting over several digit places and long-term stability of requirement parameters. Afterwards it is necessary to realize PLL and DLL in synchronizer in digital form and to approach to these subsystems as a discrete representation of analog template. Analysis of discrete phase locked loop (DPLL) or discrete delay locked loop (DDLL) and technique to determine their characteristics based on analog (continuous-time) template is performed in this posed paper. There are derived transmission response and error function for 1st order discrete locked loop and resulting equations and graphical representations for 2nd order one. It is shown that the spectrum translation due to sampling takes effect at frequency characteristics computing for specific values of loop parameters.
Keywords: Carrier synchronization, coherent demodulation, software defined receiver, symbol timing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627730 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).
Keywords: Time series modelling, stochastic processes, ARIMA model, Karkheh River.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044729 A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer
Authors: Frank Emmert Streib, Matthias Dehmer, Jing Liu, Max Mühlhauser
Abstract:
In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.Keywords: Graph similarity, DNA microarray data, cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757728 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.
Keywords: Security, internet of things, cloud computing, Stackelberg security game, machine learning, Naïve Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645727 Effect of Dry Cutting on Force and Tool Life When Machining Aerospace Material
Authors: K.Kadirgama, M.M.Noor, K.A. Abou-El-Hossein, H.H.Habeeb, M.M. Rahman, B.Mohamad, R.A. Bakar
Abstract:
Cutting fluids, usually in the form of a liquid, are applied to the chip formation zone in order to improve the cutting conditions. Cutting fluid can be expensive and represents a biological and environmental hazard that requires proper recycling and disposal, thus adding to the cost of the machining operation. For these reasons dry cutting or dry machining has become an increasingly important approach; in dry machining no coolant or lubricant is used. This paper discussed the effect of the dry cutting on cutting force and tool life when machining aerospace materials (Haynes 242) with using two different coated carbide cutting tools (TiAlN and TiN/MT-TiCN/TiN). Response surface method (RSM) was used to minimize the number of experiments. ParTiAlN Swarm Optimisation (PSO) models were developed to optimize the machining parameters (cutting speed, federate and axial depth) and obtain the optimum cutting force and tool life. It observed that carbide cutting tool coated with TiAlN performed better in dry cutting compared with TiN/MT-TiCN/TiN. On other hand, TiAlN performed more superior with using of 100 % water soluble coolant. Due to the high temperature produced by aerospace materials, the cutting tool still required lubricant to sustain the heat transfer from the workpiece.Keywords: Dry cutting, partial swarm optimisation, response surface method, tool life
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530726 Building an Interactive Web-Based GIS System for Planning of Geological Survey Works
Authors: Wu Defu, Kiefer Chiam, Yang Kin Seng
Abstract:
The planning of geological survey works is an iterative process which involves planner, geologist, civil engineer and other stakeholders, who perform different roles and have different points of view. Traditionally, the team used paper maps or CAD drawings to present the proposal which is not an efficient way to present and share idea on the site investigation proposal such as sitting of borehole location or seismic survey lines. This paper focuses on how a GIS approach can be utilised to develop a webbased system to support decision making process in the planning of geological survey works and also to plan site activities carried out by Singapore Geological Office (SGO). The authors design a framework of building an interactive web-based GIS system, and develop a prototype, which enables the users to obtain rapidly existing geological information and also to plan interactively borehole locations and seismic survey lines via a web browser. This prototype system is used daily by SGO and has shown to be effective in increasing efficiency and productivity as the time taken in the planning of geological survey works is shortened. The prototype system has been developed using the ESRI ArcGIS API 3.7 for Flex which is based on the ArcGIS 10.2.1 platform.
Keywords: Engineering geology, Flex, Geological survey planning, Geoscience, GIS, Site investigation, WebGIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3686725 Exploring the Narrative Communication: Representing Visual Information from Digital Travel Stories
Authors: Rocío Abascal-Mena, Erick López-Ornelas
Abstract:
We present the results of a case study aiming to assess the reflection of the tourism community in the Web and its usability to propose new ways to communicate visually. The wealth of information contained in the Web and the clear facilities to communicate personals points of view makes of the social web a new space of exploration. In this way, social web allow the sharing of information between communities with similar interests. However, the tourism community remains unexplored as is the case of the information covered in travel stories. Along the Web, we find multiples sites allowing the users to communicate their experiences and personal points of view of a particular place of the world. This cultural heritage is found in multiple documents, usually very little supplemented with photos, so they are difficult to explore due to the lack of visual information. This paper explores the possibility of analyzing travel stories to display them visually on maps and generate new knowledge such as patterns of travel routes. This way, travel narratives published in electronic formats can be very important especially to the tourism community because of the great amount of knowledge that can be extracted. Our approach is based on the use of a Geoparsing Web Service to extract geographic coordinates from travel narratives in order to draw the geo-positions and link the documents into a map image.
Keywords: Social web, tourism community, visual communication, travel stories, geo references.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645724 Mission of Russian Orthodox Church in Kazakhstan in the XIX Century: Activity, Expectations and Results
Authors: Z. Sadvokasova Tulehanovna
Abstract:
The focus of this research is in the area of the soviet period and the mission of the Russian Orthodox Church in Kazakhstan in the XIX century. There was close connection of national customs and traditions with religious practices, outlooks and attitudes. In particular, such an approach has alleged estimation by Kazakh historians of the process of Christianization of the local population. Some of them are inclined to consider the small number of Christening Kazakhs as evidence that the Russian Orthodox Church didn’t achieve its mission. The number of historians who think that the church didn’t achieve its mission has thousand over the last centuries, however our calculations of the number of Kazakhs who became Orthodox Christian is much more than other historians think. Such Christians can be divided into 3 groups: Some remained Christian until their deaths, others had two faiths and the third hid their true religions, having returned to their former belief. Therefore, to define the exact amount of Christening Kazakhs represented a challenge. Some data does not create a clear picture of the level of Christianization, constant and accurate was not collected. The data appearing in reports of spiritual attendants and civil authorities is not always authentic. Article purpose is illumination and the analysis missionary activity of Russian Orthodox Church in Kazakhstan.
Keywords: Russian expansion, Christianization, tsarism, Russian Orthodox Church in Kazakhstan, neophytes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001723 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran
Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi
Abstract:
Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.
Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332722 The Influence of Audio on Perceived Quality of Segmentation
Authors: Silvio R. R. Sanches, Bianca C. Barbosa, Beatriz R. Brum, Cléber G.Corrêa
Abstract:
In order to evaluate the quality of a segmentation algorithm, the researchers use subjective or objective metrics. Although subjective metrics are more accurate than objective ones, objective metrics do not require user feedback to test an algorithm. Objective metrics require subjective experiments only during their development. Subjective experiments typically display to users some videos (generated from frames with segmentation errors) that simulate the environment of an application domain. This user feedback is crucial information for metric definition. In the subjective experiments applied to develop some state-of-the-art metrics used to test segmentation algorithms, the videos displayed during the experiments did not contain audio. Audio is an essential component in applications such as videoconference and augmented reality. If the audio influences the user’s perception, using only videos without audio in subjective experiments can compromise the efficiency of an objective metric generated using data from these experiments. This work aims to identify if the audio influences the user’s perception of segmentation quality in background substitution applications with audio. The proposed approach used a subjective method based on formal video quality assessment methods. The results showed that audio influences the quality of segmentation perceived by a user.
Keywords: Background substitution, influence of audio, segmentation evaluation, segmentation quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356721 An Ontology for Spatial Relevant Objects in a Location-aware System: Case Study: A Tourist Guide System
Authors: N. Neysani Samany, M.R. Delavar, N. Chrisman, M.R. Malek
Abstract:
Location-aware computing is a type of pervasive computing that utilizes user-s location as a dominant factor for providing urban services and application-related usages. One of the important urban services is navigation instruction for wayfinders in a city especially when the user is a tourist. The services which are presented to the tourists should provide adapted location aware instructions. In order to achieve this goal, the main challenge is to find spatial relevant objects and location-dependent information. The aim of this paper is the development of a reusable location-aware model to handle spatial relevancy parameters in urban location-aware systems. In this way we utilized ontology as an approach which could manage spatial relevancy by defining a generic model. Our contribution is the introduction of an ontological model based on the directed interval algebra principles. Indeed, it is assumed that the basic elements of our ontology are the spatial intervals for the user and his/her related contexts. The relationships between them would model the spatial relevancy parameters. The implementation language for the model is OWLs, a web ontology language. The achieved results show that our proposed location-aware model and the application adaptation strategies provide appropriate services for the user.Keywords: Spatial relevancy, Context-aware, Ontology, Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645