Search results for: process corner
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5501

Search results for: process corner

71 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
70 Features of Formation and Development of Possessory Risk Management Systems of Organization in the Russian Economy

Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Maria Nikishova

Abstract:

The study investigates the impact of the ongoing financial crisis, started in the 2nd half of 2014, on marketing budgets spent by Fast-moving consumer goods companies. In these conditions, special importance is given to efficient possessory risk management systems. The main objective for establishing and developing possessory risk management systems for FMCG companies in a crisis is to analyze the data relating to the external environment and consumer behavior in a crisis. Another important objective for possessory risk management systems of FMCG companies is to develop measures and mechanisms to maintain and stimulate sales. In this regard, analysis of risks and threats which consumers define as the main reasons affecting their level of consumption become important. It is obvious that in crisis conditions the effective risk management systems responsible for development and implementation of strategies for consumer demand stimulation, as well as the identification, analysis, assessment and management of other types of risks of economic security will be the key to sustainability of a company. In terms of financial and economic crisis, the problem of forming and developing possessory risk management systems becomes critical not only in the context of management models of FMCG companies, but for all the companies operating in other sectors of the Russian economy. This study attempts to analyze the specifics of formation and development of company possessory risk management systems. In the modern economy, special importance among all the types of owner’s risks has the risk of reduction in consumer activity. This type of risk is common not only for the consumer goods trade. Study of consumer activity decline is especially important for Russia due to domestic market of consumer goods being still in the development stage, despite its significant growth. In this regard, it is especially important to form and develop possessory risk management systems for FMCG companies. The authors offer their own interpretation of the process of forming and developing possessory risk management systems within owner’s management models of FMCG companies as well as in Russian economy in general. Proposed methods and mechanisms of problem analysis of formation and development of possessory risk management systems in FMCG companies and the results received can be helpful for researchers interested in problems of consumer goods market development in Russia and overseas.

Keywords: FMCG companies, marketing budget, risk management, owner, Russian economy, organization, formation, development, system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
69 Scholar Index for Research Performance Evaluation Using Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper aims to present an objective quantitative methodology on how to evaluate individual’s scholarly research output using multiple criteria decision analysis. A multiple criteria decision making analysis (MCDMA) methodological process is adopted to build a multiple criteria evaluation model. With the introduction of the scholar index, which gives significant information about a researcher's productivity and the scholarly impact of his or her publications in a single number (s is the number of publications with at least s citations); cumulative research citation index; the scholar index is included in the citation databases to cover the multidimensional complexity of scholarly research performance and to undertake objective evaluations with scholar index. The scholar index, one of publication activity indexes, is analyzed by considering it to be the most appropriate sciencemetric indicator which allows to smooth over many drawbacks of scholarly output assessment by mere calculation of the number of publications (quantity) and citations (quality). Hence, this study includes a set of indicators-based scholar index to be used for evaluating scholarly researchers. Google Scholar open science database was used to assess and discuss scholarly productivity and impact of researchers. Based on the experiment of computing the scholar index, and its derivative indexes for a set of researchers on open research database platform, quantitative methods of assessing scholarly research output were successfully considered to rank researchers. The proposed methodology considers the ranking, and the selection of data on which a scholarly research performance evaluation was based, the analysis of the data, and the presentation of the multiple criteria analysis results.

Keywords: Multiple Criteria Decision Making Analysis, MCDMA, Research Performance Evaluation, Scholar Index, h index, Science Citation Index, Science Efficiency, Cumulative Citation Index, Sciencemetrics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 480
68 Performance Management of Tangible Assets within the Balanced Scorecard and Interactive Business Decision Tools

Authors: Raymond K. Jonkers

Abstract:

The present study investigated approaches and techniques to enhance strategic management governance and decision making within the framework of a performance-based balanced scorecard. The review of best practices from strategic, program, process, and systems engineering management provided for a holistic approach toward effective outcome-based capability management. One technique, based on factorial experimental design methods, was used to develop an empirical model. This model predicted the degree of capability effectiveness and is dependent on controlled system input variables and their weightings. These variables represent business performance measures, captured within a strategic balanced scorecard. The weighting of these measures enhances the ability to quantify causal relationships within balanced scorecard strategy maps. The focus in this study was on the performance of tangible assets within the scorecard rather than the traditional approach of assessing performance of intangible assets such as knowledge and technology. Tangible assets are represented in this study as physical systems, which may be thought of as being aboard a ship or within a production facility. The measures assigned to these systems include project funding for upgrades against demand, system certifications achieved against those required, preventive maintenance to corrective maintenance ratios, and material support personnel capacity against that required for supporting respective systems. The resultant scorecard is viewed as complimentary to the traditional balanced scorecard for program and performance management. The benefits from these scorecards are realized through the quantified state of operational capabilities or outcomes. These capabilities are also weighted in terms of priority for each distinct system measure and aggregated and visualized in terms of overall state of capabilities achieved. This study proposes the use of interactive controls within the scorecard as a technique to enhance development of alternative solutions in decision making. These interactive controls include those for assigning capability priorities and for adjusting system performance measures, thus providing for what-if scenarios and options in strategic decision-making. In this holistic approach to capability management, several cross functional processes were highlighted as relevant amongst the different management disciplines. In terms of assessing an organization’s ability to adopt this approach, consideration was given to the P3M3 management maturity model.

Keywords: Outcome based management, performance management, lifecycle costs, balanced scorecard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
67 Analysis of Delays during Initial Phase of Construction Projects and Mitigation Measures

Authors: Sunaitan Al Mutairi

Abstract:

A perfect start is a key factor for project completion on time. The study examined the effects of delayed mobilization of resources during the initial phases of the project. This paper mainly highlights the identification and categorization of all delays during the initial construction phase and their root cause analysis with corrective/control measures for the Kuwait Oil Company oil and gas projects. A relatively good percentage of the delays identified during the project execution (Contract award to end of defects liability period) attributed to mobilization/preliminary activity delays. Data analysis demonstrated significant increase in average project delay during the last five years compared to the previous period. Contractors had delays/issues during the initial phase, which resulted in slippages and progressively increased, resulting in time and cost overrun. Delays/issues not mitigated on time during the initial phase had very high impact on project completion. Data analysis of the delays for the past five years was carried out using trend chart, scatter plot, process map, box plot, relative importance index and Pareto chart. Construction of any project inside the Gathering Centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. Delay affects completion of projects and compromises quality, schedule and budget of project deliverables. Works executed as per plan during the initial phase and start-up duration of the project construction activities resulted in minor slippages/delays in project completion. In addition, there was a good working environment between client and contractor resulting in better project execution and management. Mainly, the contractor was on the front foot in the execution of projects, which had minimum/no delays during the initial and construction period. Hence, having a perfect start during the initial construction phase shall have a positive influence on the project success. Our research paper studies each type of delay with some real example supported by statistic results and suggests mitigation measures. Detailed analysis carried out with all stakeholders based on impact and occurrence of delays to have a practical and effective outcome to mitigate the delays. The key to improvement is to have proper control measures and periodic evaluation/audit to ensure implementation of the mitigation measures. The focus of this research is to reduce the delays encountered during the initial construction phase of the project life cycle.

Keywords: Construction activities delays, delay analysis for construction projects, mobilization delays, oil and gas projects delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
66 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO hydro-deoxygenation, DFT, liquid fuels, XPS, XTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
65 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement

Authors: Fiona Wahr, Sitalakshmi Venkatraman

Abstract:

Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.

Keywords: Enabling skills, student retention, embedded learning support, continuous improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
64 Frequency Response of Complex Systems with Localized Nonlinearities

Authors: E. Menga, S. Hernandez

Abstract:

Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.

Keywords: Frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
63 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
62 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.

Keywords: Sustainability, constructions ecology, composite structure model, design structure matrix, environmental impact assessment, life cycle analysis, climate change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
61 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
60 Media Facades Utilization for Sustainable Tourism Promotion in Historic Places: Case Study of the Walled City of Famagusta, North Cyprus

Authors: Nikou Javadi, Uğur Dağlı

Abstract:

The importance of culture and tourism in the attractiveness and competitiveness of the countries is central, and many regions are evidencing their cultural assets, tangible and intangible, as a means to create comparative advantages in tourism and produce a distinctive place in response to the pressures of globalization. Culture and tourism are interlinked because of their obvious combination and growth potential. Cultural tourism is a crucial global tourism market with fast growing. Regions can develop significant relations between culture and tourism to increase their attractiveness as places to visit, live and invest, increasing their competitiveness. Accordingly, having new and creative approach to historical areas as cultural value-based destinations can improve their conditions to promote tourism. Furthermore, in 21st century, media become the most important factor affecting the development of urban cities, including public places. As a result of the digital revolution, re-imaging and re-linkage public places by media are essential to create more interactions between public spaces and users, interaction media display, and urban screens, one of the most important defined media. This interaction can transform the urban space from being neglected to be more interactive space with users, especially the pedestrians. The paper focuses on The Walled City of Famagusta. As many other historic quarters elsewhere in the world, is in a process, of decay and deterioration, and its functionally distinctive areas are severely threatened by physical, functional, locational, and image obsolescence at varying degrees. So the focus on the future development of this area through tourism promotion can be an appropriate decision for the monument enhancement of the spatial quality in Walled City of Famagusta. In this paper, it is aimed to identify the effects of these new digital factors to transform public spaces especially in historic urban areas to promote creative tourism. Accordingly, two different analysis methods are used as well as a theoretical review. The first is case study on site and the second is Close ended questionnaire, test many concepts raised in this paper. The physical analysis on site carried out in order to evaluate the walled city restoration for touristic purpose. Besides, theoretical review is done in order to provide background to the subject and cleared Factors to attract tourists.

Keywords: Historical areas, Media Facade, Sustainable tourism, Walled city of Famagusta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
59 Designing a Rescue System for Earthquake-Stricken Area with the Aim of Facilitation and Accelerating Accessibilities (Case Study: City of Tehran)

Authors: Naeleh Motamedi, Masoud Mahmoudkhan Shirazi, Nima Nouraei

Abstract:

Natural disasters, including earthquake, kill many people around the world every year. Society rescue actions, which start after the earthquake and are called LAST in abbreviation, include locating, access, stabilization and transportation. In the present article, we have studied the process of local accessibility to the injured and transporting them to health care centers. With regard the heavy traffic load due to earthquake, the destruction of connecting roads and bridges and the heavy debris in alleys and street, which put the lives of the injured and the people buried under the debris in danger, accelerating the rescue actions and facilitating the accessibilities are of great importance, obviously. Tehran, the capital of Iran, is among the crowded cities in the world and is the center of extensive economic, political, cultural and social activities. Tehran has a population of about 9.5 millions and because of the immigration of people from the surrounding cities. Furthermore, considering the fact that Tehran is located on two important and large faults, a 6 Richter magnitude earthquake in this city could lead to the greatest catastrophe during the entire human history. The present study is a kind of review and a major part of the required information for it, has been obtained from libraries all of the rescue vehicles around the world, including rescue helicopters, ambulances, fire fighting vehicles and rescue boats, and their applied technology, and also the robots specifically designed for the rescue system and the advantages and disadvantages of them, have been investigated. The studies show that there is a significant relationship between the rescue team-s arrival time at the incident zone and the number of saved people; so that, if the duration of burial under debris 30 minutes, the probability of survival is %99.3, after a day is %81, after 2days is %19 and after 5days is %7.4. The exiting transport systems all have some defects. If these defects are removed, more people could be saved each hour and the preparedness against natural disasters is increased. In this study, transport system has been designed for the rescue team and the injured; which could carry the rescue team to the incident zone and the injured to the health care centers. In addition, this system is able to fly in the air and move on the earth as well; so that the destruction of roads and the heavy traffic load could not prevent the rescue team from arriving early at the incident zone. The system also has the equipment required firebird for debris removing, optimum transport of the injured and first aid.

Keywords: earthquake, accelerating, accessibilities transportation, rescue system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
58 Encouraging Collaboration and Innovation: The New Engineering Oriented Educational Reform in Urban Planning, Tianjin University, China

Authors: Tianjie Zhang, Bingqian Cheng, Peng Zeng

Abstract:

Engineering science and technology progress and innovation have become an important engine to promote social development. The reform exploration of "new engineering" in China has drawn extensive attention around the world, with its connotation as "to cultivate future diversified, innovative and outstanding engineering talents by taking ‘fostering character and civic virtue’ as the guide, responding to changes and shaping the future as the construction concept, and inheritance and innovation, crossover and fusion, coordination and sharing as the principal approach". In this context, Tianjin University, as a traditional Chinese university with advantages in engineering, further launched the CCII (Coherent-Collaborative-Interdisciplinary-Innovation) program, raising the cultivation idea of integrating new liberal arts education, multidisciplinary engineering education and personalized professional education. As urban planning practice in China has undergone the evolution of "physical planning -- comprehensive strategic planning -- resource management-oriented planning", planning education has also experienced the transmutation process of "building foundation -- urban scientific foundation -- multi-disciplinary integration". As a characteristic and advantageous discipline of Tianjin University, the major of Urban and Rural Planning, in accordance with the "CCII Program of Tianjin University", aims to build China's top and world-class major, and implements the following educational reform measures: 1. Adding corresponding English courses, such as advanced course on GIS Analysis, courses on comparative studies in international planning involving ecological resources and the sociology of the humanities, etc. 2. Holding "Academician Forum", inviting international academicians to give lectures or seminars to track international frontier scientific research issues. 3. Organizing "International Joint Workshop" to provide students with international exchange and design practice platform. 4. Setting up a business practice base, so that students can find problems from practice and solve them in an innovative way. Through these measures, the Urban and Rural Planning major of Tianjin University has formed a talent training system with multi-disciplinary cross integration and orienting to the future science and technology.

Keywords: China, higher education reform, innovation, new engineering education, rural and urban planning, Tianjin University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
57 Impact of Liquidity Crunch on Interbank Network

Authors: I. Lucas, N. Schomberg, F-A. Couturier

Abstract:

Most empirical studies have analyzed how liquidity risks faced by individual institutions turn into systemic risk. Recent banking crisis has highlighted the importance of grasping and controlling the systemic risk, and the acceptance by Central Banks to ease their monetary policies for saving default or illiquid banks. This last point shows that banks would pay less attention to liquidity risk which, in turn, can become a new important channel of loss. The financial regulation focuses on the most important and “systemic” banks in the global network. However, to quantify the expected loss associated with liquidity risk, it is worth to analyze sensitivity to this channel for the various elements of the global bank network. A small bank is not considered as potentially systemic; however the interaction of small banks all together can become a systemic element. This paper analyzes the impact of medium and small banks interaction on a set of banks which is considered as the core of the network. The proposed method uses the structure of agent-based model in a two-class environment. In first class, the data from actual balance sheets of 22 large and systemic banks (such as BNP Paribas or Barclays) are collected. In second one, to model a network as closely as possible to actual interbank market, 578 fictitious banks smaller than the ones belonging to first class have been split into two groups of small and medium ones. All banks are active on the European interbank network and have deposit and market activity. A simulation of 12 three month periods representing a midterm time interval three years is projected. In each period, there is a set of behavioral descriptions: repayment of matured loans, liquidation of deposits, income from securities, collection of new deposits, new demands of credit, and securities sale. The last two actions are part of refunding process developed in this paper. To strengthen reliability of proposed model, random parameters dynamics are managed with stochastic equations as rates the variations of which are generated by Vasicek model. The Central Bank is considered as the lender of last resort which allows banks to borrow at REPO rate and some ejection conditions of banks from the system are introduced.

Liquidity crunch due to exogenous crisis is simulated in the first class and the loss impact on other bank classes is analyzed though aggregate values representing the aggregate of loans and/or the aggregate of borrowing between classes. It is mainly shown that the three groups of European interbank network do not have the same response, and that intermediate banks are the most sensitive to liquidity risk.

Keywords: Systemic Risk, Financial Contagion, Liquidity Risk, Interbank Market, Network Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
56 A Development of English Pronunciation Using Principles of Phonetics for English Major Students at Loei Rajabhat University

Authors: Pongthep Bunrueng

Abstract:

This action research accentuates the outcome of a development in English pronunciation, using principles of phonetics for English major students at Loei Rajabhat University. The research is split into 5 separate modules: 1) Organs of Speech and How to Produce Sounds, 2) Monopthongs, 3) Diphthongs, 4) Consonant sounds, and 5) Suprasegmental Features. Each module followed a 4 step action research process, 1) Planning, 2) Acting, 3) Observing, and 4) Reflecting. The research targeted 2nd year students who were majoring in English Education at Loei Rajabhat University during the academic year of 2011. A mixed methodology employing both quantitative and qualitative research was used, which put theory into action, taking segmental features up to suprasegmental features. Multiple tools were employed which included the following documents: pre-test and post-test papers, evaluation and assessment papers, group work assessment forms, a presentation grading form, an observation of participants form and a participant self-reflection form.

All 5 modules for the target group showed that results from the post-tests were higher than those of the pre-tests, with 0.01 statistical significance. All target groups attained results ranging from low to moderate and from moderate to high performance. The participants who attained low to moderate results had to re-sit the second round. During the first development stage, participants attended classes with group participation, in which they addressed planning through mutual co-operation and sharing of responsibility. Analytic induction of strong points for this operation illustrated that learner cognition, comprehension, application, and group practices were all present whereas the participants with weak results could be attributed to biological differences, differences in life and learning, or individual differences in responsiveness and self-discipline.

Participants who were required to be re-treated in Spiral 2 received the same treatment again. Results of tests from the 5 modules after the 2nd treatment were that the participants attained higher scores than those attained in the pre-test. Their assessment and development stages also showed improved results. They showed greater confidence at participating in activities, produced higher quality work, and correctly followed instructions for each activity. Analytic induction of strong and weak points for this operation remains the same as for Spiral 1, though there were improvements to problems which existed prior to undertaking the second treatment.

Keywords: Action research, English pronunciation, phonetics, segmental features, suprasegmental features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853
55 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements

Authors: Alexander Buhr, Klaus Ehrenfried

Abstract:

Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.

Keywords: Boundary layer, high-speed PIV, ICE3, moving train model, roughness elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
54 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation

Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher

Abstract:

Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.

Keywords: Brine disposal, desalination, field study, inclined dense jets, negatively buoyant discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
53 Power and Delay Optimized Graph Representation for Combinational Logic Circuits

Authors: Padmanabhan Balasubramanian, Karthik Anantha

Abstract:

Structural representation and technology mapping of a Boolean function is an important problem in the design of nonregenerative digital logic circuits (also called combinational logic circuits). Library aware function manipulation offers a solution to this problem. Compact multi-level representation of binary networks, based on simple circuit structures, such as AND-Inverter Graphs (AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XORInverter Graphs, Reduced Boolean Circuits [8] does exist in literature. In this work, we discuss a novel and efficient graph realization for combinational logic circuits, represented using a NAND-NOR-Inverter Graph (NNIG), which is composed of only two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. The networks are constructed on the basis of irredundant disjunctive and conjunctive normal forms, after factoring, comprising terms with minimum support. Construction of a NNIG for a non-regenerative function in normal form would be straightforward, whereas for the complementary phase, it would be developed by considering a virtual instance of the function. However, the choice of best NNIG for a given function would be based upon literal count, cell count and DAG node count of the implementation at the technology independent stage. In case of a tie, the final decision would be made after extracting the physical design parameters. We have considered AIG representation for reduced disjunctive normal form and the best of OIG/AOG/AOIG for the minimized conjunctive normal forms. This is necessitated due to the nature of certain functions, such as Achilles- heel functions. NNIGs are found to exhibit 3.97% lesser node count compared to AIGs and OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells than AIGs and OIG/AOG/AOIGs for the various samples considered. We compare the power efficiency and delay improvement achieved by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for various case studies. In comparison with functionally equivalent, irredundant and compact AIGs, NNIGs report mean savings in power and delay of 43.71% and 25.85% respectively, after technology mapping with a 0.35 micron TSMC CMOS process. For a comparison with OIG/AOG/AOIGs, NNIGs demonstrate average savings in power and delay by 47.51% and 24.83%. With respect to device count needed for implementation with static CMOS logic style, NNIGs utilize 37.85% and 33.95% lesser transistors than their AIG and OIG/AOG/AOIG counterparts.

Keywords: AND-Inverter Graph, OR-Inverter Graph, DirectedAcyclic Graph, Low power design, Delay optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
52 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: Artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
51 An Integrated Approach to Child Care Earthquake Preparedness through “Telemachus” Project

Authors: A. Kourou, S. Kyriakopoulos, N. Anyfanti

Abstract:

A lot of children under the age of five spend their daytime hours away from their home, in a kindergarten. Caring for children is a serious subject, and their safety in case of earthquake is the first priority. Being aware of earthquakes helps to prioritize the needs and take the appropriate actions to limit the effects. Earthquakes occurring anywhere at any time require emergency planning. Earthquake planning is a cooperative effort and childcare providers have unique roles and responsibilities. Greece has high seismicity and Ionian Islands Region has the highest seismic activity of the country. Earthquake Planning and Protection Organization (EPPO) is a national organization in Greece. The mission of EPPO is the seismic risk reduction by designing an earthquake management program of mitigation and preparedness. Among other actions EPPO has analyzed the needs and requirements of kindergartens on earthquake protection issues and has designed specific activities to familiarize the day care centers staff being prepared for earthquakes.  This research presents the results of a survey that detects the level of earthquake preparedness of kindergartens in all over the country and Ionian Islands too. A closed-form questionnaire of 20 main questions was developed for the survey in order to detect the aspects of participants concerning the earthquake preparedness actions at individual, family and day care environment level. 2668 questionnaires were gathered from March 2014 to May 2019, and analyzed by EPPO’s Department of Education. Moreover, this paper presents the EPPO’s educational activities targeted to the Ionian Islands Region that implemented in the framework of “Telemachus” Project. To provide safe environment for children to learn, and staff to work is the foremost goal of any State, community and kindergarten. This project is funded under the Priority Axis “Environmental Protection and Sustainable Development” of Operational Plan “Ionian Islands 2014-2020”. It is increasingly accepted that emergency preparedness should be thought of as an ongoing process rather than a one-time activity. Creating an earthquake safe daycare environment that facilitates learning is a challenging task. Training, drills, and update of emergency plan should take place throughout the year at kindergartens to identify any gaps and to ensure the emergency procedures. EPPO will continue to work closely with regional and local authorities to actively address the needs of children and kindergartens before, during and after earthquakes.

Keywords: Child care centers, education on earthquake issues, emergency planning, Ionian Islands Region of Greece, kindergartens, preparedness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 469
50 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contain four obvious stages and the main decomposition reaction occurred in the range of 200-600 °C. Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2 and 3 were in the range of 6.67-20.37 kJ/mol for SS; 1.51-6.87 kJ/mol for HZSM5; and 2.29-9.17 kJ/mol for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1 and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with HZSM5 and AC were in the total range of C4-C17 with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds while the presence of HZSM5 and AC dropped to 7.3% and 13.02%, respectively. Meanwhile, generation of value-added chemicals such as light aromatic compounds were significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR and TGA techniques. Overall, this research demonstrated that AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Keywords: Activated char, bio-oil, catalytic pyrolysis, HZSM5, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
49 Convention Refugees in New Zealand: Being Trapped in Immigration Limbo Without the Right to Obtain a Visa

Authors: Saska Alexandria Hayes

Abstract:

Multiple Convention Refugees in New Zealand are stuck in a state of immigration limbo due to a lack of defined immigration policies. The Refugee Convention of 1951 does not give the right to be issued a permanent right to live and work in the country of asylum. A gap in New Zealand's immigration law and policy has left Convention Refugees without the right to obtain a resident or temporary entry visa. The significant lack of literature on this topic suggests that the lack of visa options for Convention Refugees in New Zealand is a widely unknown or unacknowledged issue. Refugees in New Zealand enjoy the right of non-refoulement contained in Article 33 of the Refugee Convention 1951, whether lawful or unlawful. However, a number of rights contained in the Refugee Convention 1951, such as the right to gainful employment and social security, are limited to refugees who maintain lawful immigration status. If a Convention Refugee is denied a resident visa, the only temporary entry visa a Convention Refugee can apply for in New Zealand is discretionary. The appeal cases heard at the Immigration Protection Tribunal establish that Immigration New Zealand has declined resident and discretionary temporary entry visa applications by Convention Refugees for failing to meet the health or character immigration instructions. The inability of a Convention Refugee to gain residency in New Zealand creates a dependence on the issue of discretionary temporary entry visas to maintain lawful status. The appeal cases record that this reliance has led to Convention Refugees' lawful immigration status being in question, temporarily depriving them of the rights contained in the Refugee Convention 1951 of lawful refugees. In one case, the process of applying for a discretionary temporary entry visa led to a lawful Convention Refugee being temporarily deprived of the right to social security, breaching Article 24 of the Refugee Convention 1951. The judiciary has stated a constant reliance on the issue of discretionary temporary entry visas for Convention Refugees can lead to a breach of New Zealand's international obligations under Article 7 of the International Covenant on Civil and Political Rights. The appeal cases suggest that, despite successful judicial proceedings, at least three persons have been made to rely on the issue of discretionary temporary entry visas potentially indefinitely. The appeal cases establish that a Convention Refugee can be denied a discretionary temporary entry visa and become unlawful. Unlawful status could ultimately breach New Zealand's obligations under Article 33 of the Refugee Convention 1951 as it would procedurally deny Convention Refugees asylum. It would force them to choose between the right of non-refoulement or leaving New Zealand to seek the ability to access all the human rights contained in the Universal Declaration of Human Rights elsewhere. This paper discusses how the current system has given rise to these breaches and emphasizes a need to create a designated temporary entry visa category for Convention Refugees.

Keywords: Domestic policy, immigration, migration, New Zealand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128
48 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: Algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, nutrients removal, saline wastewater, sequencing batch reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
47 Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s system. Naturally exchanged patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s system. The Probabilistic Risk Assessment (PRA) technique is utilized to assess the safety of an industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA-safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and rural areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is predicted for multiple factors distribution schemes of multi-criteria analysis. The input–output analysis is explored from the spillover effect, and we conducted Monte Carlo simulations for sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the composite index for biosphere with collective structure of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in an artistic/architectural perspective. The hypothesis is deployed to unify analytic and analogical spatial structure in development urban environments using optimization loads as an example of integrated industrial structure where the process is based on engineering topology of systems ecology.

Keywords: Spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265
46 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology

Authors: Sanjeev Kumar Appicharla

Abstract:

This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety critical incident to raise awareness of biases in systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the Methodology used to model and analyse the safety-critical incident. The SIRI Methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the Management Oversight and Risk Tree technique. The benefits of the SIRI Methodology are threefold: first is that it incorporates “Heuristics and Biases” approach, in the Management Oversight and Risk Tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling technique. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organisational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signalling firms and transport planners, and front-line staff such that lessons learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner’s and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision making and risk management processes and practices in the IEC 15288 Systems Engineering standard, and in the industrial context such as the GB railways and Artificial Intelligence (AI) contexts as well.

Keywords: Accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382
45 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China

Authors: Feng Yue, Fei Dai

Abstract:

With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.

Keywords: Landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
44 Faculty-Industry R&D Joint Ventures: Barriers VS Incentives for Developing Nations

Authors: Muhammad Fiaz, Baseerat Rizwan, Naqvi Najam Abbas, Yang Naiding

Abstract:

The aspiration of this research article is to target and focus the gains of university-Industry (U-I) collaborations and exploring those hurdles which are the obstacles for attaining these gains. University-Industry collaborations have attained great importance since 1980 in USA due to its application in all fields of life. U-I collaboration is a bilateral process where academia is a proactive member to make such alliances. Universities want to ameliorate their academic-base with the technicalities of technobabbles. U-I collaboration is becoming an essential lane for achieving innovative goals in this century. Many developed nations have set successful examples to prove this phenomenon as a catalyst to reduce costs, efforts and personnel for R&D projects. This study is exploits amplitudes of UI collaboration incentives in the light of success stories of developed countries. Many universities in USA, UK, Canada and various European Countries have been engaged with enterprises for numerous collaborative agreements. A long list of strategic and short term R&D projects has been executed in developed countries to accomplish their intended purposes. Due to the lack of intentions, genuine research and research-oriented environment, the mentioned field could not grow very well in developing countries. During last decade, a new wave of research has induced the institutes of developing countries to promote R&D culture especially in Pakistan. Higher Education Commission (HEC) has initiated many projects and funding supports for universities which have collaborative intentions with industry. Findings show that rapid innovation, overwhelm the technological complexities and articulated intellectual-base are major incentives which steer both partners to establish faculty-industry alliances. Everchanging technologies, concerned about intellectual property, different research environment and culture, research relevancy (Basic or applied), exposure differences and diversity of knowledge (bookish or practical) are main barriers to establish and retain joint ventures. Findings also concluded that, it is dire need to support and enhance cooperation among academia and industry to promote highly coordinated research behaviors. Author has proposed a roadmap for developing countries to promote R&D clusters among faculty and industry to deal the technological challenges and innovation complexities. Based on our research findings, Model for R&D Collaboration for developing countries also have been proposed to promote articulated R&D environment. If developing countries follow this phenomenon, rapid innovations can be achieved with limited R&D budget heads.

Keywords: University-Industry Collaboration, Academia, Innovation, R&D Barriers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
43 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests

Authors: R. S. Giraddi, C. M. Poleshi

Abstract:

Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.  Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control.  The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.

Keywords: Humic acid, azadirachtin, vermicompost, insect-pest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
42 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857