Search results for: image segmentation.
1142 Evaluation of Classifiers Based On I2C Distance for Action Recognition
Authors: Lei Zhang, Tao Wang, Xiantong Zhen
Abstract:
Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.
Keywords: Instance-to-class distance, NBNN, Local NBNN, NBNN kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681141 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.
Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9321140 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference
Authors: Ayman A. Aly, Abdallah A. Alshnnaway
Abstract:
The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15741139 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.Keywords: Image Enhancement, Neural Networks, Multi-Frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12051138 Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration
Authors: F. C. Calnegru
Abstract:
This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.
Keywords: Complex wavelet transform, image registration, modeling using hidden state variables, probabilistic similaritymeasure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13861137 An Amalgam Approach for DICOM Image Classification and Recognition
Authors: J. Umamaheswari, G. Radhamani
Abstract:
This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.
Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22711136 Application of LSB Based Steganographic Technique for 8-bit Color Images
Authors: Mamta Juneja, Parvinder S. Sandhu, Ekta Walia
Abstract:
Steganography is the process of hiding one file inside another such that others can neither identify the meaning of the embedded object, nor even recognize its existence. Current trends favor using digital image files as the cover file to hide another digital file that contains the secret message or information. One of the most common methods of implementation is Least Significant Bit Insertion, in which the least significant bit of every byte is altered to form the bit-string representing the embedded file. Altering the LSB will only cause minor changes in color, and thus is usually not noticeable to the human eye. While this technique works well for 24-bit color image files, steganography has not been as successful when using an 8-bit color image file, due to limitations in color variations and the use of a colormap. This paper presents the results of research investigating the combination of image compression and steganography. The technique developed starts with a 24-bit color bitmap file, then compresses the file by organizing and optimizing an 8-bit colormap. After the process of compression, a text message is hidden in the final, compressed image. Results indicate that the final technique has potential of being useful in the steganographic world.
Keywords: Compression, Colormap, Encryption, Steganographyand LSB Insertion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30081135 Virtual 3D Environments for Image-Based Navigation Algorithms
Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka
Abstract:
This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.Keywords: Simulation, visual navigation, mobile robot, data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10561134 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina M. R. Caridade, Ana Rita F. Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with health care facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool, developed in MATLAB using Graphical User Interface, for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing to view original images and fusion images, compare processed and original images, adjust parameters and save images. The tool proposed in an innovative teaching and learning environment, consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques, necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides a real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.
Keywords: Image fusion, image processing, teaching-learning simulation tool, biomedical engineering education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731133 An Analysis of Compression Methods and Implementation of Medical Images in Wireless Network
Authors: C. Rajan, K. Geetha, S. Geetha
Abstract:
The motivation of image compression technique is to reduce the irrelevance and redundancy of the image data in order to store or pass data in an efficient way from one place to another place. There are several types of compression methods available. Without the help of compression technique, the file size is knowingly larger, usually several megabytes, but by doing the compression technique, it is possible to reduce file size up to 10% as of the original without noticeable loss in quality. Image compression can be lossless or lossy. The compression technique can be applied to images, audio, video and text data. This research work mainly concentrates on methods of encoding, DCT, compression methods, security, etc. Different methodologies and network simulations have been analyzed here. Various methods of compression methodologies and its performance metrics has been investigated and presented in a table manner.Keywords: Image compression techniques, encoding, DCT, lossy compression, lossless compression, JPEG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11951132 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11081131 Content-based Retrieval of Medical Images
Authors: Lilac A. E. Al-Safadi
Abstract:
With the advance of multimedia and diagnostic images technologies, the number of radiographic images is increasing constantly. The medical field demands sophisticated systems for search and retrieval of the produced multimedia document. This paper presents an ongoing research that focuses on the semantic content of radiographic image documents to facilitate semantic-based radiographic image indexing and a retrieval system. The proposed model would divide a radiographic image document, based on its semantic content, and would be converted into a logical structure or a semantic structure. The logical structure represents the overall organization of information. The semantic structure, which is bound to logical structure, is composed of semantic objects with interrelationships in the various spaces in the radiographic image.Keywords: Semantic Indexing, Content-Based Retrieval, Radiographic Images, Data Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001130 A Semi-Fragile Watermarking Scheme for Color Image Authentication
Authors: M. Hamad Hassan, S.A.M. Gilani
Abstract:
In this paper, a semi-fragile watermarking scheme is proposed for color image authentication. In this particular scheme, the color image is first transformed from RGB to YST color space, suitable for watermarking the color media. Each channel is divided into 4×4 non-overlapping blocks and its each 2×2 sub-block is selected. The embedding space is created by setting the two LSBs of selected sub-block to zero, which will hold the authentication and recovery information. For verification of work authentication and parity bits denoted by 'a' & 'p' are computed for each 2×2 subblock. For recovery, intensity mean of each 2×2 sub-block is computed and encoded upto six to eight bits depending upon the channel selection. The size of sub-block is important for correct localization and fast computation. For watermark distribution 2DTorus Automorphism is implemented using a private key to have a secure mapping of blocks. The perceptibility of watermarked image is quite reasonable both subjectively and objectively. Our scheme is oblivious, correctly localizes the tampering and able to recovery the original work with probability of near one.
Keywords: Image Authentication, YST Color Space, Intensity Mean, LSBs, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18391129 Real-Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Image processing for capsule endoscopy requires large memory and it takes hours for diagnosis since operation time is normally more than 8 hours. A real-time analysis algorithm of capsule images can be clinically very useful. It can differentiate abnormal tissue from health structure and provide with correlation information among the images. Bleeding is our interest in this regard and we propose a method of detecting frames with potential bleeding in real-time. Our detection algorithm is based on statistical analysis and the shapes of bleeding spots. We tested our algorithm with 30 cases of capsule endoscopy in the digestive track. Results were excellent where a sensitivity of 99% and a specificity of 97% were achieved in detecting the image frames with bleeding spots.Keywords: bleeding, capsule endoscopy, image processing, real time analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18871128 Low-MAC FEC Controller for JPEG2000 Image Transmission Over IEEE 802.15.4
Authors: Kyu-Yeul Wang, Sang-Seol Lee, Jea-Yeon Song, Jea-Young Choi, Seong-Seob Shin, Dong-Sun Kim, Duck-Jin Chung
Abstract:
In this paper, we propose the low-MAC FEC controller for practical implementation of JPEG2000 image transmission using IEEE 802.15.4. The proposed low-MAC FEC controller has very small HW size and spends little computation to estimate channel state. Because of this advantage, it is acceptable to apply IEEE 802.15.4 which has to operate more than 1 year with battery. For the image transmission, we integrate the low-MAC FEC controller and RCPC coder in sensor node of LR-WPAN. The modified sensor node has increase of 3% hardware size than conventional zigbee sensor node.
Keywords: FEC, IEEE 802.15.4, JPEG2000, low-MAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19551127 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure Mapping Systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of pressure sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the user's needs.
Keywords: cushion, image processing, pressure mapping system, wheelchair
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7111126 Composite Relevance Feedback for Image Retrieval
Authors: Pushpa B. Patil, Manesh B. Kokare
Abstract:
This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.
Keywords: Image retrieval, relevance feedback, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971125 Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco
Authors: Talbi Mohammed, Oustous Aziz, Ben Messaoud Mounir, Sebihi Rajaa, Khalis Mohammed
Abstract:
Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.
Keywords: Mammography, image quality, breast dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7991124 Computer Aided Detection on Mammography
Authors: Giovanni Luca Masala
Abstract:
A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.Keywords: Computer Aided Detection, Computer Aided Diagnosis, mammography, GRID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19341123 A Way of Converting Color Images to Gray Scale Ones for the Color Blinds -Reducing the Colors for Tokyo Subway Map-
Authors: Katsuhiro Narikiyo, Naoto Kobayakawa
Abstract:
We proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color blinds. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them.
Keywords: Image processing, Color blind, JPEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14081122 Particle Image Velocimetry for Measuring Water Flow Velocity
Authors: King Kuok Kuok, Po Chan Chiu
Abstract:
Floods are natural phenomena, which may turn into disasters causing widespread damage, health problems and even deaths. Nowadays, floods had become more serious and more frequent due to climatic changes. During flooding, discharge measurement still can be taken by standing on the bridge across the river using portable measurement instrument. However, it is too dangerous to get near to the river especially during high flood. Therefore, this study employs Particle Image Velocimetry (PIV) as a tool to measure the surface flow velocity. PIV is a image processing technique to track the movement of water from one point to another. The PIV codes are developed using Matlab. In this study, 18 ping pong balls were scattered over the surface of the drain and images were taken with a digital SLR camera. The images obtained were analyzed using the PIV code. Results show that PIV is able to produce the flow velocity through analyzing the series of images captured.
Keywords: Particle Image Velocimetry, flow velocity, surface flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28571121 Comparative Study of Different Enhancement Techniques for Computed Tomography Images
Authors: C. G. Jinimole, A. Harsha
Abstract:
One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.
Keywords: Computed tomography, enhancement techniques, increasing contrast, PSNR and MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13821120 Edge Detection with the Parametric Filtering Method (Comparison with Canny Method)
Authors: Yacine Ait Ali Yahia, Abderazak Guessoum
Abstract:
In this paper, a new method of image edge-detection and characterization is presented. “Parametric Filtering method" uses a judicious defined filter, which preserves the signal correlation structure as input in the autocorrelation of the output. This leads, showing the evolution of the image correlation structure as well as various distortion measures which quantify the deviation between two zones of the signal (the two Hamming signals) for the protection of an image edge.Keywords: Edge detection, parametrable recursive filter, autocorrelation structure, distortion measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12931119 A Hyper-Domain Image Watermarking Method based on Macro Edge Block and Wavelet Transform for Digital Signal Processor
Authors: Yi-Pin Hsu, Shin-Yu Lin
Abstract:
In order to protect original data, watermarking is first consideration direction for digital information copyright. In addition, to achieve high quality image, the algorithm maybe can not run on embedded system because the computation is very complexity. However, almost nowadays algorithms need to build on consumer production because integrator circuit has a huge progress and cheap price. In this paper, we propose a novel algorithm which efficient inserts watermarking on digital image and very easy to implement on digital signal processor. In further, we select a general and cheap digital signal processor which is made by analog device company to fit consumer application. The experimental results show that the image quality by watermarking insertion can achieve 46 dB can be accepted in human vision and can real-time execute on digital signal processor.
Keywords: watermarking, digital signal processor, embedded system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12571118 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach
Authors: Safak Isik, Ozalp Vayvay
Abstract:
Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.
Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11671117 Outdoor Anomaly Detection with a Spectroscopic Line Detector
Authors: O. J. G. Somsen
Abstract:
One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simple spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various widths we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application.Keywords: Anomaly detection, spectroscopic line imaging, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16541116 Selection of Appropriate Classification Technique for Lithological Mapping of Gali Jagir Area, Pakistan
Authors: Khunsa Fatima, Umar K. Khattak, Allah Bakhsh Kausar
Abstract:
Satellite images interpretation and analysis assist geologists by providing valuable information about geology and minerals of an area to be surveyed. A test site in Fatejang of district Attock has been studied using Landsat ETM+ and ASTER satellite images for lithological mapping. Five different supervised image classification techniques namely maximum likelihood, parallelepiped, minimum distance to mean, mahalanobis distance and spectral angle mapper have been performed upon both satellite data images to find out the suitable classification technique for lithological mapping in the study area. Results of these five image classification techniques were compared with the geological map produced by Geological Survey of Pakistan. Result of maximum likelihood classification technique applied on ASTER satellite image has highest correlation of 0.66 with the geological map. Field observations and XRD spectra of field samples also verified the results. A lithological map was then prepared based on the maximum likelihood classification of ASTER satellite image.
Keywords: ASTER, Landsat-ETM+, Satellite, Image classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29361115 Image Indexing Using a Color Similarity Metric based on the Human Visual System
Authors: Angelo Nodari, Ignazio Gallo
Abstract:
The novelty proposed in this study is twofold and consists in the developing of a new color similarity metric based on the human visual system and a new color indexing based on a textual approach. The new color similarity metric proposed is based on the color perception of the human visual system. Consequently the results returned by the indexing system can fulfill as much as possibile the user expectations. We developed a web application to collect the users judgments about the similarities between colors, whose results are used to estimate the metric proposed in this study. In order to index the image's colors, we used a text indexing engine to facilitate the integration of visual features in a database of text documents. The textual signature is build by weighting the image's colors in according to their occurrence in the image. The use of a textual indexing engine, provide us a simple, fast and robust solution to index images. A typical usage of the system proposed in this study, is the development of applications whose data type is both visual and textual. In order to evaluate the proposed method we chose a price comparison engine as a case of study, collecting a series of commercial offers containing the textual description and the image representing a specific commercial offer.
Keywords: Color Extraction, Content-Based Image Retrieval, Indexing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30321114 VDGMSISS: A Verifiable and Detectable Multi-Secret Images Sharing Scheme with General Access Structure
Authors: Justie Su-Tzu Juan, Ming-Jheng Li, Ching-Fen Lee, Ruei-Yu Wu
Abstract:
A secret image sharing scheme is a way to protect images. The main idea is dispersing the secret image into numerous shadow images. A secret image sharing scheme can withstand the impersonal attack and achieve the highly practical property of multiuse is more practical. Therefore, this paper proposes a verifiable and detectable secret image-sharing scheme called VDGMSISS to solve the impersonal attack and to achieve some properties such as encrypting multi-secret images at one time and multi-use. Moreover, our scheme can also be used for any genera access structure.Keywords: Multi-secret images sharing scheme, verifiable, detectable, general access structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4591113 Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework
Authors: T. P. Athira, Gibin Chacko George
Abstract:
This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.
Keywords: Dual-tree complex wavelet transform (DT-CWT), denoising, interpolation, optimal estimation, super resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170