Search results for: Unsupervised feature learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2854

Search results for: Unsupervised feature learning.

2344 Customization of Moodle Open Source LMS for Tanzania Secondary Schools’ Use

Authors: Ellen. A. Kalinga

Abstract:

Moodle is an open source learning management system that enables creation of a powerful and flexible learning environment. Many organizations, especially learning institutions have customized Moodle open source LMS for their own use. In general open source LMSs are of great interest due to many advantages they offer in terms of cost, usage and freedom to customize to fit a particular context. Tanzania Secondary School e- Learning (TanSSe-L) system is the learning management system for Tanzania secondary schools. TanSSe-L system was developed using a number of methods, one of them being customization of Moodle Open Source LMS. This paper presents few areas on the way Moodle OS LMS was customized to produce a functional TanSSe-L system fitted to the requirements and specifications of Tanzania secondary schools’ context.

Keywords: LMS, Moodle, e-Learning, Tanzania, Secondary school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3734
2343 The Use of ICT and e-Learning in Higher Education in Japan

Authors: Kumiko Aoki

Abstract:

Japan is known to be a technological powerhouse, being noted for its automobiles, consumer electronics, laptop computers, portable gaming devices, and more recently healing animal robots. Japan is also noted for its popular culture; manga, anime, novels, films, character goods, game programs, cosplay cafes, karaoke and so on. It may be natural for people outside Japan to assume that e-learning in Japan must be well advanced and innovative. In reality, the application of technologies in education in Japan is far behind of other developed countries. Especially in higher education, apathy of students towards their study prevails and teachers continue ignoring such student attitudes. E-learning, which is supposed to revolutionalize the way people learn as it has potentials to enable more student-centered learning, has not been realized in Japan and mostly used to perpetuate the teachercentered teaching in a different format.

Keywords: e-learning, Higher Education, ICT in Education, Japan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7385
2342 Teachers’ Awareness of the Significance of Lifelong Learning: A Case Study of Secondary School Teachers of Batna – Algeria

Authors: Bahloul Amel

Abstract:

This study is an attempt to raise the awareness of the stakeholders and the authorities on the sensitivity of Algerian secondary school teachers of English as a Foreign Language about the students’ loss of English language skills learned during formal schooling with effort and at expense and the supposed measures to arrest that loss. Data was collected from secondary school teachers of EFL and analyzed quantitatively using a questionnaire containing open-ended and close-ended questions. The results advocate a consensus about the need for actions to be adopted to make assessment techniques outcome-oriented. Most of the participants were in favor of including curricular activities involving contextualized learning, problem-solving learning critical selfawareness, self and peer-assisted learning, use of computers and internet so as to make learners autonomous.

Keywords: Contextualized learning, EFL, Lifelong learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
2341 Fast Search Method for Large Video Database Using Histogram Features and Temporal Division

Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved fast search algorithm using combined histogram features and temporal division method for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal feature which is robust to color distortion. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 30 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 120ms, and Equal Error Rate (ERR) of 1% is achieved, which is more accurately and robust than conventional fast video search algorithm.

Keywords: Fast search, Adjacent pixel intensity differencequantization (APIDQ), DC image, Histogram feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
2340 Arabic Character Recognition using Artificial Neural Networks and Statistical Analysis

Authors: Ahmad M. Sarhan, Omar I. Al Helalat

Abstract:

In this paper, an Arabic letter recognition system based on Artificial Neural Networks (ANNs) and statistical analysis for feature extraction is presented. The ANN is trained using the Least Mean Squares (LMS) algorithm. In the proposed system, each typed Arabic letter is represented by a matrix of binary numbers that are used as input to a simple feature extraction system whose output, in addition to the input matrix, are fed to an ANN. Simulation results are provided and show that the proposed system always produces a lower Mean Squared Error (MSE) and higher success rates than the current ANN solutions.

Keywords: ANN, Backpropagation, Gaussian, LMS, MSE, Neuron, standard deviation, Widrow-Hoff rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
2339 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations

Authors: Satyanadh Gundimada, Vijayan K Asari

Abstract:

A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
2338 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030

Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni

Abstract:

Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.

Keywords: e-Commerce, Logistics, Machine Learning, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
2337 The Relationship between Competency-Based Learning and Learning Efficiency of Media Communication Students at Suan Sunandha Rajabhat University

Authors: Somtop Keawchuer

Abstract:

This research aims to study (1) the relationship between competency-based learning and learning efficiency of new media communication students at Suan Sunandha University (2) the demographic factor effect on learning efficiency of students at Suan Sunandha University. This research method will use quantitative research; data was collected by questionnaires distributed to students from new media communication in management science faculty of Suan Sunandha Rajabhat University for 1340 sample by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including T-test, ANOVA and Pearson correlation for hypothesis testing. The results showed that the competency-based learning in term of ability to communicate, ability to think and solve the problem, life skills and ability to use technology has a significant relationship with learning efficiency in term of the cognitive domain, psychomotor domain and affective domain at the 0.05 level and which is in harmony with the research hypotheses.

Keywords: Competency-based learning, learning efficiency, new media communication students, Suan Sunandha Rajabhat University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
2336 Integration of Best Practices and Requirements for Preliminary E-Learning Courses

Authors: Sophie Huck, Knut Linke

Abstract:

This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.

Keywords: E-learning evaluation, self-learning, virtual classroom, virtual learning environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
2335 Post Earthquake Volunteer Learning That Build Up Caring Learning Communities

Authors: Naoki Okamura

Abstract:

From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.

Keywords: Moral development, moral education, service learning, volunteer learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
2334 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283
2333 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service

Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura

Abstract:

Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.

Keywords: Consensus building, value co-creation, higher education, learning service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
2332 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: Handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669
2331 Architecture from Teaching to Learning to Practice: Authentic learning Tasks in Developing Professional Competencies

Authors: N. Utaberta, B. Hassanpour, M. Surat, A. I. Che Ani, N.M. Tawil

Abstract:

The concerns of education and practice of architecture do not necessarily overlap. Indeed the gap between them could be seen increasingly and less frequently bridged. We suggest that changing in architecture education and clarifying the relationship between these two can help to find and address the opportunities and unique positions to bridge this gulf.

Keywords: Architecture education, Learning, Practice, Teaching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
2330 A Dictionary Learning Method Based On EMD for Audio Sparse Representation

Authors: Yueming Wang, Zenghui Zhang, Rendong Ying, Peilin Liu

Abstract:

Sparse representation has long been studied and several dictionary learning methods have been proposed. The dictionary learning methods are widely used because they are adaptive. In this paper, a new dictionary learning method for audio is proposed. Signals are at first decomposed into different degrees of Intrinsic Mode Functions (IMF) using Empirical Mode Decomposition (EMD) technique. Then these IMFs form a learned dictionary. To reduce the size of the dictionary, the K-means method is applied to the dictionary to generate a K-EMD dictionary. Compared to K-SVD algorithm, the K-EMD dictionary decomposes audio signals into structured components, thus the sparsity of the representation is increased by 34.4% and the SNR of the recovered audio signals is increased by 20.9%.

Keywords: Dictionary Learning, EMD, K-means Method, Sparse Representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
2329 Using Technology to Enhance the Student Assessment Experience

Authors: D. J. Smith, M. A. Qayyum

Abstract:

The use of information tools is a common activity for students of any educational stage when they encounter online learning activities. Finding the relevant information for particular learning tasks is the topic of this paper as it investigates the use of information tools for a group of student participants. The paper describes and discusses the results with particular implications for use in higher education, and the findings suggest that improvement in assessment design and subsequent student learning may be achieved by structuring the purposefulness of information tools usage and online reading behaviors of university students.

Keywords: Information tools, assessment, online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
2328 Improving the Quality of e-learning Courses in Higher Education through Student Satisfaction

Authors: Susana Lemos, Neuza Pedro

Abstract:

Thepurpose of the research is to characterize the levels of satisfaction of the students in e-learning post-graduate courses, taking into account specific dimensions of the course which were considered as benchmarks for the quality of this type of online learning initiative, as well as the levels of satisfaction towards each specific indicator identified in each dimension. It was also an aim of this study to understand how thesedimensions relate to one another. Using a quantitative research approach in the collection and analysis of the data, the study involves the participation of the students who attended on e-learning course in 2010/2011. The conclusions of this study suggest that online students present relatively high levels of satisfaction, which points towards a positive experience during the course. It is possible to note that there is a correlation between the different dimensions studied, consequently leading to different improvement strategies. Ultimately, this investigation aims to contribute to the promotion of quality and the success of e-learning initiatives in Higher Education.

Keywords: e-learning, higher education, quality, students satisfaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
2327 Use of Semantic Networks as Learning Material and Evaluation of the Approach by Students

Authors: Philippe A. Martin

Abstract:

This article first summarizes reasons why current approaches supporting Open Learning and Distance Education need to be complemented by tools permitting lecturers, researchers and students to cooperatively organize the semantic content of Learning related materials (courses, discussions, etc.) into a fine-grained shared semantic network. This first part of the article also quickly describes the approach adopted to permit such a collaborative work. Then, examples of such semantic networks are presented. Finally, an evaluation of the approach by students is provided and analyzed.

Keywords: knowledge sharing, knowledge evaluation, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2326 Integrating Agents and Computational Intelligence Techniques in E-learning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.

Keywords: E-learning environments, intelligent agents, user modeling, Bayesian Networks, computational intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
2325 Automatically-generated Concept Maps as a Learning Tool

Authors: Xia Lin

Abstract:

Concept maps can be generated manually or automatically. It is important to recognize differences of the two types of concept maps. The automatically generated concept maps are dynamic, interactive, and full of associations between the terms on the maps and the underlying documents. Through a specific concept mapping system, Visual Concept Explorer (VCE), this paper discusses how automatically generated concept maps are different from manually generated concept maps and how different applications and learning opportunities might be created with the automatically generated concept maps. The paper presents several examples of learning strategies that take advantages of the automatically generated concept maps for concept learning and exploration.

Keywords: Concept maps, Dynamic concept representation, learning strategies, visual interface, Visual Concept Explorer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
2324 Real-time 3D Feature Extraction without Explicit 3D Object Reconstruction

Authors: Kwangjin Hong, Chulhan Lee, Keechul Jung, Kyoungsu Oh

Abstract:

For the communication between human and computer in an interactive computing environment, the gesture recognition is studied vigorously. Therefore, a lot of studies have proposed efficient methods about the recognition algorithm using 2D camera captured images. However, there is a limitation to these methods, such as the extracted features cannot fully represent the object in real world. Although many studies used 3D features instead of 2D features for more accurate gesture recognition, the problem, such as the processing time to generate 3D objects, is still unsolved in related researches. Therefore we propose a method to extract the 3D features combined with the 3D object reconstruction. This method uses the modified GPU-based visual hull generation algorithm which disables unnecessary processes, such as the texture calculation to generate three kinds of 3D projection maps as the 3D feature: a nearest boundary, a farthest boundary, and a thickness of the object projected on the base-plane. In the section of experimental results, we present results of proposed method on eight human postures: T shape, both hands up, right hand up, left hand up, hands front, stand, sit and bend, and compare the computational time of the proposed method with that of the previous methods.

Keywords: Fast 3D Feature Extraction, Gesture Recognition, Computer Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
2323 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
2322 Optimizing Dialogue Strategy Learning Using Learning Automata

Authors: G. Kumaravelan, R. Sivakumar

Abstract:

Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlying probabilistic structure has a Markov Chain. Researchers have mostly focused on model-free algorithms for automating the design of dialogue management using machine learning techniques such as reinforcement learning. But in model-free algorithms there exist a dilemma in engaging the type of exploration versus exploitation. Hence we present a model-based online policy learning algorithm using interconnected learning automata for optimizing dialogue strategy. The proposed algorithm is capable of deriving an optimal policy that prescribes what action should be taken in various states of conversation so as to maximize the expected total reward to attain the goal and incorporates good exploration and exploitation in its updates to improve the naturalness of humancomputer interaction. We test the proposed approach using the most sophisticated evaluation framework PARADISE for accessing to the railway information system.

Keywords: Dialogue management, Learning automata, Reinforcement learning, Spoken dialogue system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
2321 Learning Process Enhancement for Robot Behaviors

Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam, Abdullah Zawawi Hj. Talib

Abstract:

Designing a simulated system and training it to optimize its tasks in simulated environment helps the designers to avoid problems that may appear when designing the system directly in real world. These problems are: time consuming, high cost, high errors percentage and low efficiency and accuracy of the system. The proposed system will investigate and improve the efficiency and accuracy of a simulated robot to choose correct behavior to perform its task. In this paper, machine learning, which uses genetic algorithm, is adopted. This type of machine learning is called genetic-based machine learning in which a distributed classifier system is used to improve the efficiency and accuracy of the robot. Consequently, it helps the robot to achieve optimal action.

Keywords: Machine Learning, Genetic-Based MachineLearning, Learning Classifier System, Behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
2320 An Augmented-Reality Interactive Card Game for Teaching Elementary School Students

Authors: YuLung Wu, YuTien Wu, ShuMey Yu

Abstract:

Game-based learning can enhance the learning motivation of students and provide a means for them to learn through playing games. This study used augmented reality technology to develop an interactive card game as a game-based teaching aid for delivering elementary school science course content with the aim of enhancing student learning processes and outcomes. Through playing the proposed card game, students can familiarize themselves with appearance, features, and foraging behaviors of insects. The system records the actions of students, enabling teachers to determine their students’ learning progress. In this study, 37 students participated in an assessment experiment and provided feedback through questionnaires. Their responses indicated that they were significantly more motivated to learn after playing the game, and their feedback was mostly positive.

Keywords: Game-based learning, learning motivation, teaching aid, augmented reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2662
2319 E-Education in Multicultural Setting: The Success of Mobile Learning

Authors: Subramaniam Chandran

Abstract:

This paper explains how mobile learning assures sustainable e-education for multicultural group of students. This paper reports the impact of mobile learning on distance education in multicultural environment. The emergence of learning technologies through CD, internet, and mobile is increasingly adopted by distance institutes for quick delivery and cost-effective purposes. Their sustainability is conditioned by the structure of learners as well as the teaching community. The experimental study was conducted among the distant learners of Vinayaka Missions University located at Salem in India. Students were drawn from multicultural environment based on different languages, religions, class and communities. During the mobile learning sessions, the students, who are divided on language, religion, class and community, were dominated by play impulse rather than study anxiety or cultural inhibitions. This study confirmed that mobile learning improved the performance of the students despite their division based on region, language or culture. In other words, technology was able to transcend the relative deprivation in the multicultural groups. It also confirms sustainable e-education through mobile learning and cost-effective system of instruction. Mobile learning appropriates the self-motivation and play impulse of the young learners in providing sustainable e-education to multicultural social groups of students.

Keywords: E-Education, mobile learning, multiculturalism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
2318 The Use of a Tactical Simulator as a Learning Resource at the Norwegian Military Academy

Authors: O. Boe, A. Langaard Jensen

Abstract:

The Norwegian Military Academy (Army) has been using a tactical simulator for the last two years. During this time there has been some discussion concerning how to use the simulator most efficiently and what type of learning one achieves by using the simulator. The problem that is addressed in this paper is how simulators can be used as a learning resource for students concerned with developing their military profession. The aim of this article is to create a wider consciousness regarding the use of a simulator while educating officers in a military profession. The article discusses the use of simulators from two different perspectives. The first perspective deals with using the simulator as a computer game, and the second perspective looks at the simulator as a socio-cultural artefact. Furthermore the article discusses four different ways the simulator can be looked upon as a useful learning resource when educating students of a military profession.

Keywords: Learning, military, profession, simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
2317 Development and Usability Evaluation of Platform Independent Mobile Learning Tool(M-LT)

Authors: Sahilu Wendeson Sahilu, Wan Fatimah Wan Ahmad, Nazleeni Samiha Haron

Abstract:

Mobile learning (M-learning) integrates mobile devices and wireless computing technology to enhance the current conventional learning system. However, there are constraints which are affecting the implementation of platform and device independent M-learning. The main aim of this research is to fulfill the following main objectives: to develop platform independent mobile learning tool (M-LT) for structured programming course, and evaluate its effectiveness and usability using ADDIE instructional design model (ISD) as M-LT life cycle. J2ME (Java 2 micro edition) and XML (Extensible Markup Language) were used to develop platform independent M-LT. It has two modules lecture materials and quizzes. This study used Quasi experimental design to measure effectiveness of the tool. Meanwhile, questionnaire is used to evaluate the usability of the tool. Finally, the results show that the system was effective and also usability evaluation was positive.

Keywords: ADDIE, Conventional learning, ISD, J2ME, Mlearning, Quasi Experiment, Wireless Technology, XML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
2316 Information Fusion for Identity Verification

Authors: Girija Chetty, Monica Singh

Abstract:

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..

Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
2315 The Effects of the Inference Process in Reading Texts in Arabic

Authors: May George

Abstract:

Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predicate the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.

Keywords: Inference, Reading, Arabic, and Language Acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051