Search results for: Ultrasound Images.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1252

Search results for: Ultrasound Images.

742 A Prediction-Based Reversible Watermarking for MRI Images

Authors: Nuha Omran Abokhdair, Azizah Bt Abdul Manaf

Abstract:

Reversible watermarking is a special branch of image watermarking, that is able to recover the original image after extracting the watermark from the image. In this paper, an adaptive prediction-based reversible watermarking scheme is presented, in order to increase the payload capacity of MRI medical images. The scheme divides the image into two parts, Region of Interest (ROI) and Region of Non-Interest (RONI). Two bits are embedded in each embeddable pixel of RONI and one bit is embedded in each embeddable pixel of ROI. The experimental results demonstrate that the proposed scheme is able to achieve high embedding capacity. This is mainly caused by two reasons. First, the pixels that were excluded from data embedding due to overflow/underflow are used for data embedding. Second, large location map that need to be added to watermark data as overhead is eliminated and thus lower data embedding capacity is prevented. Moreover, the scheme provides good visual quality to the watermarked image.

Keywords: Medical image watermarking, reversible watermarking, Difference Expansion, Prediction-Error Expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
741 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy

Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise

Abstract:

The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.

Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
740 A CT-based Monte Carlo Dose Calculations for Proton Therapy Using a New Interface Program

Authors: A. Esmaili Torshabi, A. Terakawa, K. Ishii, H. Yamazaki, S. Matsuyama, Y. Kikuchi, M. Nakhostin, H. Sabet, A. Ishizaki, W. Yamashita, T. Togashi, J. Arikawa, H. Akiyama, K. Koyata

Abstract:

The purpose of this study is to introduce a new interface program to calculate a dose distribution with Monte Carlo method in complex heterogeneous systems such as organs or tissues in proton therapy. This interface program was developed under MATLAB software and includes a friendly graphical user interface with several tools such as image properties adjustment or results display. Quadtree decomposition technique was used as an image segmentation algorithm to create optimum geometries from Computed Tomography (CT) images for dose calculations of proton beam. The result of the mentioned technique is a number of nonoverlapped squares with different sizes in every image. By this way the resolution of image segmentation is high enough in and near heterogeneous areas to preserve the precision of dose calculations and is low enough in homogeneous areas to reduce the number of cells directly. Furthermore a cell reduction algorithm can be used to combine neighboring cells with the same material. The validation of this method has been done in two ways; first, in comparison with experimental data obtained with 80 MeV proton beam in Cyclotron and Radioisotope Center (CYRIC) in Tohoku University and second, in comparison with data based on polybinary tissue calibration method, performed in CYRIC. These results are presented in this paper. This program can read the output file of Monte Carlo code while region of interest is selected manually, and give a plot of dose distribution of proton beam superimposed onto the CT images.

Keywords: Monte Carlo, CT images, Quadtree decomposition, Interface program, Proton beam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
739 An Additive Watermarking Technique in Gray Scale Images Using Discrete Wavelet Transformation and Its Analysis on Watermark Strength

Authors: Kamaldeep Joshi, Rajkumar Yadav, Ashok Kumar Yadav

Abstract:

Digital Watermarking is a procedure to prevent the unauthorized access and modification of personal data. It assures that the communication between two parties remains secure and their communication should be undetected. This paper investigates the consequence of the watermark strength of the grayscale image using a Discrete Wavelet Transformation (DWT) additive technique. In this method, the gray scale host image is divided into four sub bands: LL (Low-Low), HL (High-Low), LH (Low-High), HH (High-High) and the watermark is inserted in an LL sub band using DWT technique. As the image is divided into four sub bands, a watermark of equal size of the LL sub band has been inserted and the results are discussed. LL represents the average component of the host image which contains the maximum information of the image. Two kinds of experiments are performed. In the first, the same watermark is embedded in different images and in the later on the strength of the watermark varies by a factor of s i.e. (s=10, 20, 30, 40, 50) and it is inserted in the same image.

Keywords: Watermarking, discrete wavelet transform, scaling factor, steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
738 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application

Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed

Abstract:

This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.

Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
737 The SAFRS System : A Case-Based Reasoning Training Tool for Capturing and Re-Using Knowledge

Authors: Souad Demigha

Abstract:

The paper aims to specify and build a system, a learning support in radiology-senology (breast radiology) dedicated to help assist junior radiologists-senologists in their radiologysenology- related activity based on experience of expert radiologistssenologists. This system is named SAFRS (i.e. system supporting the training of radiologists-senologists). It is based on the exploitation of radiologic-senologic images (primarily mammograms but also echographic images or MRI) and their related clinical files. The aim of such a system is to help breast cancer screening in education. In order to acquire this expert radiologist-senologist knowledge, we have used the CBR (case-based reasoning) approach. The SAFRS system will promote the evolution of teaching in radiology-senology by offering the “junior radiologist" trainees an advanced pedagogical product. It will permit a strengthening of knowledge together with a very elaborate presentation of results. At last, the know-how will derive from all these factors.

Keywords: Learning support, radiology-senology, training, education, CBR, accumulated experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
736 Improved Processing Speed for Text Watermarking Algorithm in Color Images

Authors: Hamza A. Al-Sewadi, Akram N. A. Aldakari

Abstract:

Copyright protection and ownership proof of digital multimedia are achieved nowadays by digital watermarking techniques. A text watermarking algorithm for protecting the property rights and ownership judgment of color images is proposed in this paper. Embedding is achieved by inserting texts elements randomly into the color image as noise. The YIQ image processing model is found to be faster than other image processing methods, and hence, it is adopted for the embedding process. An optional choice of encrypting the text watermark before embedding is also suggested (in case required by some applications), where, the text can is encrypted using any enciphering technique adding more difficulty to hackers. Experiments resulted in embedding speed improvement of more than double the speed of other considered systems (such as least significant bit method, and separate color code methods), and a fairly acceptable level of peak signal to noise ratio (PSNR) with low mean square error values for watermarking purposes.

Keywords: Steganography, watermarking, private keys, time complexity measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
735 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery

Authors: Evans Belly, Imdad Rizvi, M. M. Kadam

Abstract:

Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.

Keywords: Building detection, shadow detection, landscape generation, label, partitioning, very high resolution satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
734 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: Agricultural mobile robot, image processing, path recognition, Hough transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
733 Optical Verification of an Ophthalmological Examination Apparatus Employing the Electroretinogram Function on Fundus-Related Perimetry

Authors: Naoto Suzuki

Abstract:

Japanese are affected by the most common causes of eyesight loss such as glaucoma, diabetic retinopathy, pigmentary retinal degeneration, and age-related macular degeneration. We developed an ophthalmological examination apparatus with a fundus camera, precisely fundus-related perimetry (microperimetry), and electroretinogram (ERG) functions to diagnose a variety of diseases that cause eyesight loss. The experimental apparatus was constructed with the same optical system as a fundus camera. The microperimetry optical system was calculated and added to the experimental apparatus using the German company Optenso's optical engineering software (OpTaliX-LT 10.8). We also added an Edmund infrared camera (EO-0413), a lens with a 25 mm focal length, a 45° cold mirror, a 12 V/50 W halogen lamp, and an 8-inch monitor. We made the artificial eye of a plane-convex lens, a black spacer, and a hemispherical cup. The hemispherical cup had a small section of the paper at the bottom. The artificial eye was photographed five times using the experimental apparatus. The software was created to display the examination target on the monitor and save examination data using C++Builder 10.2. The retinal fundus was displayed on the monitor at a length and width of 1 mm and a resolution of 70.4 ± 4.1 and 74.7 ± 6.8 pixels, respectively. The microperimetry and ERG functions were successfully added to the experimental ophthalmological apparatus. A moving machine was developed to measure the artificial eye's movement. The artificial eye's rear part was painted black and white in the central area. It was rotated 10 degrees from one side to the other. The movement was captured five times as motion videos. Three static images were extracted from one of the motion videos captured. The images display the artificial eye facing the center, right, and left directions. The three images were processed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2, including trimming, binarization, making a window, deleting peripheral area, and morphological operations. To calculate the artificial eye's fundus center, we added a gravity method to the program to calculate the gravity position of connected components. From the three images, the image processing could calculate the center position.

Keywords: Ophthalmological examination apparatus, microperimetry, electroretinogram, eye movement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568
732 An Optical Flow Based Segmentation Method for Objects Extraction

Authors: C. Lodato, S. Lopes

Abstract:

This paper describes a segmentation algorithm based on the cooperation of an optical flow estimation method with edge detection and region growing procedures. The proposed method has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. The addressed problem consists in extracting whole objects from background for producing images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The first task of the algorithm exploits the cues from motion analysis for moving area detection. Objects and background are then refined using respectively edge detection and region growing procedures. These tasks are iteratively performed until objects and background are completely resolved. The developed method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Motion Detection, Object Extraction, Optical Flow, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
731 Land Use Change Detection Using Remote Sensing and GIS

Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi

Abstract:

In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.

Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
730 On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion

Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida

Abstract:

This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.

Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
729 A Hybrid Distributed Vision System for Robot Localization

Authors: Hsiang-Wen Hsieh, Chin-Chia Wu, Hung-Hsiu Yu, Shu-Fan Liu

Abstract:

Localization is one of the critical issues in the field of robot navigation. With an accurate estimate of the robot pose, robots will be capable of navigating in the environment autonomously and efficiently. In this paper, a hybrid Distributed Vision System (DVS) for robot localization is presented. The presented approach integrates odometry data from robot and images captured from overhead cameras installed in the environment to help reduce possibilities of fail localization due to effects of illumination, encoder accumulated errors, and low quality range data. An odometry-based motion model is applied to predict robot poses, and robot images captured by overhead cameras are then used to update pose estimates with HSV histogram-based measurement model. Experiment results show the presented approach could localize robots in a global world coordinate system with localization errors within 100mm.

Keywords: Distributed Vision System, Localization, Measurement model, Motion model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
728 Use of Fuzzy Edge Image in Block Truncation Coding for Image Compression

Authors: Amarunnishad T.M., Govindan V.K., Abraham T. Mathew

Abstract:

An image compression method has been developed using fuzzy edge image utilizing the basic Block Truncation Coding (BTC) algorithm. The fuzzy edge image has been validated with classical edge detectors on the basis of the results of the well-known Canny edge detector prior to applying to the proposed method. The bit plane generated by the conventional BTC method is replaced with the fuzzy bit plane generated by the logical OR operation between the fuzzy edge image and the corresponding conventional BTC bit plane. The input image is encoded with the block mean and standard deviation and the fuzzy bit plane. The proposed method has been tested with test images of 8 bits/pixel and size 512×512 and found to be superior with better Peak Signal to Noise Ratio (PSNR) when compared to the conventional BTC, and adaptive bit plane selection BTC (ABTC) methods. The raggedness and jagged appearance, and the ringing artifacts at sharp edges are greatly reduced in reconstructed images by the proposed method with the fuzzy bit plane.

Keywords: Image compression, Edge detection, Ground truth image, Peak signal to noise ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
727 Methods of Geodesic Distance in Two-Dimensional Face Recognition

Authors: Rachid Ahdid, Said Safi, Bouzid Manaut

Abstract:

In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.

Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
726 Pre-Analysis of Printed Circuit Boards Based On Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show, that a higher contrast is achieved in the near infrared compared to ultraviolett and visible light.

Keywords: Electronic Waste, Recycling, Multispectral Imaging, Printed Circuit Boards, Rare-Earth Elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
725 Exploiting Global Self Similarity for Head-Shoulder Detection

Authors: Lae-Jeong Park, Jung-Ho Moon

Abstract:

People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.

Keywords: Pedestrian detection, cascade of rejecters, feature extraction, self-symmetry, HOG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
724 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition

Authors: L. Hamsaveni, Navya Prakash, Suresha

Abstract:

Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.

Keywords: Grayscale image format, image fusing, SURF detection, YCbCr image format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
723 RoboWeedSupport-Sub Millimeter Weed Image Acquisition in Cereal Crops with Speeds up till 50 Km/H

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Mads Dyrmann, Robert Poulsen

Abstract:

For the past three years, the Danish project, RoboWeedSupport, has sought to bridge the gap between the potential herbicide savings using a decision support system and the required weed inspections. In order to automate the weed inspections it is desired to generate a map of the weed species present within the field, to generate the map images must be captured with samples covering the field. This paper investigates the economical cost of performing this data collection based on a camera system mounted on a all-terain vehicle (ATV) able to drive and collect data at up to 50 km/h while still maintaining a image quality sufficient for identifying newly emerged grass weeds. The economical estimates are based on approximately 100 hectares recorded at three different locations in Denmark. With an average image density of 99 images per hectare the ATV had an capacity of 28 ha per hour, which is estimated to cost 6.6 EUR/ha. Alternatively relying on a boom solution for an existing tracktor it was estimated that a cost of 2.4 EUR/ha is obtainable under equal conditions.

Keywords: Weed mapping, integrated weed management, weed recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
722 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
721 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition

Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla

Abstract:

This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.

Keywords: Characterization, diamond-like carbon, DLC, mechanical properties, pulsed laser deposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
720 Optical Flow Technique for Supersonic Jet Measurements

Authors: H. D. Lim, Jie Wu, T. H. New, Shengxian Shi

Abstract:

This paper outlines the development of an experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 4 bar and exit Mach of 1.5. High-speed singleframe or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Despite these challenges however, this supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.

Keywords: Schlieren, optical flow, supersonic jets, shock shear layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
719 Journey on Image Clustering Based on Color Composition

Authors: Achmad Nizar Hidayanto, Elisabeth Martha Koeanan

Abstract:

Image clustering is a process of grouping images based on their similarity. The image clustering usually uses the color component, texture, edge, shape, or mixture of two components, etc. This research aims to explore image clustering using color composition. In order to complete this image clustering, three main components should be considered, which are color space, image representation (feature extraction), and clustering method itself. We aim to explore which composition of these factors will produce the best clustering results by combining various techniques from the three components. The color spaces use RGB, HSV, and L*a*b* method. The image representations use Histogram and Gaussian Mixture Model (GMM), whereas the clustering methods use KMeans and Agglomerative Hierarchical Clustering algorithm. The results of the experiment show that GMM representation is better combined with RGB and L*a*b* color space, whereas Histogram is better combined with HSV. The experiments also show that K-Means is better than Agglomerative Hierarchical for images clustering.

Keywords: Image clustering, feature extraction, RGB, HSV, L*a*b*, Gaussian Mixture Model (GMM), histogram, Agglomerative Hierarchical Clustering (AHC), K-Means, Expectation-Maximization (EM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
718 SEM Image Classification Using CNN Architectures

Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197
717 Optimization of Solar Tracking Systems

Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer

Abstract:

In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.

Keywords: Clouds detection, fuzzy inference systems, images processing, sun trackers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
716 Image Adaptive Watermarking with Visual Model in Orthogonal Polynomials based Transformation Domain

Authors: Krishnamoorthi R., Sheba Kezia Malarchelvi P. D.

Abstract:

In this paper, an image adaptive, invisible digital watermarking algorithm with Orthogonal Polynomials based Transformation (OPT) is proposed, for copyright protection of digital images. The proposed algorithm utilizes a visual model to determine the watermarking strength necessary to invisibly embed the watermark in the mid frequency AC coefficients of the cover image, chosen with a secret key. The visual model is designed to generate a Just Noticeable Distortion mask (JND) by analyzing the low level image characteristics such as textures, edges and luminance of the cover image in the orthogonal polynomials based transformation domain. Since the secret key is required for both embedding and extraction of watermark, it is not possible for an unauthorized user to extract the embedded watermark. The proposed scheme is robust to common image processing distortions like filtering, JPEG compression and additive noise. Experimental results show that the quality of OPT domain watermarked images is better than its DCT counterpart.

Keywords: Orthogonal Polynomials based Transformation, Digital Watermarking, Copyright Protection, Visual model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
715 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study

Authors: Jurij Tasinkiewicz

Abstract:

The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wavebeam both in elevation and azimuth. In this paper a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.

Keywords: Beamforming, transducer array, BIS-expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
714 Maximizer of the Posterior Marginal Estimate for Noise Reduction of JPEG-compressed Image

Authors: Yohei Saika, Yuji Haraguchi

Abstract:

We constructed a method of noise reduction for JPEG-compressed image based on Bayesian inference using the maximizer of the posterior marginal (MPM) estimate. In this method, we tried the MPM estimate using two kinds of likelihood, both of which enhance grayscale images converted into the JPEG-compressed image through the lossy JPEG image compression. One is the deterministic model of the likelihood and the other is the probabilistic one expressed by the Gaussian distribution. Then, using the Monte Carlo simulation for grayscale images, such as the 256-grayscale standard image “Lena" with 256 × 256 pixels, we examined the performance of the MPM estimate based on the performance measure using the mean square error. We clarified that the MPM estimate via the Gaussian probabilistic model of the likelihood is effective for reducing noises, such as the blocking artifacts and the mosquito noise, if we set parameters appropriately. On the other hand, we found that the MPM estimate via the deterministic model of the likelihood is not effective for noise reduction due to the low acceptance ratio of the Metropolis algorithm.

Keywords: Noise reduction, JPEG-compressed image, Bayesian inference, the maximizer of the posterior marginal estimate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
713 Robust Statistics Based Algorithm to Remove Salt and Pepper Noise in Images

Authors: V.R.Vijaykumar, P.T.Vanathi, P.Kanagasabapathy, D.Ebenezer

Abstract:

In this paper, a robust statistics based filter to remove salt and pepper noise in digital images is presented. The function of the algorithm is to detect the corrupted pixels first since the impulse noise only affect certain pixels in the image and the remaining pixels are uncorrupted. The corrupted pixels are replaced by an estimated value using the proposed robust statistics based filter. The proposed method perform well in removing low to medium density impulse noise with detail preservation upto a noise density of 70% compared to standard median filter, weighted median filter, recursive weighted median filter, progressive switching median filter, signal dependent rank ordered mean filter, adaptive median filter and recently proposed decision based algorithm. The visual and quantitative results show the proposed algorithm outperforms in restoring the original image with superior preservation of edges and better suppression of impulse noise

Keywords: Image denoising, Nonlinear filter, Robust Statistics, and Salt and Pepper Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201