Search results for: Turbine Blades Cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 685

Search results for: Turbine Blades Cooling

175 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator

Authors: A. Hassannia, S. Ramezani

Abstract:

The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.

Keywords: Coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
174 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator

Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang

Abstract:

This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.

Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
173 Impact Behavior of Cryogenically Treated En 52 and 21-4N Valve Steels

Authors: M. Arockia Jaswin, D. Mohan Lal

Abstract:

Cryogenic treatment is the process of cooling a material to extremely low temperatures to generate enhanced mechanical and physical properties. The purpose of this study is to examine the effect of cryogenic treatment on the impact behavior of En 52 and 21-4N valve steels. The valve steels are subjected to shallow (193 K) and deep cryogenic treatment (85 K), and the impact behavior is compared with the valve steel materials subjected to conventional heat treatment. The impact test is carried out in accordance with the ASTM E 23-02a standard. The results show an improvement of 23 % in the impact energy for the En 52 deep cryo-treated samples when compared to that of the conventionally heat treated samples. It is revealed that during cryogenic treatment fine platelets of martensite are formed from the retained austenite, and these platelets promote the precipitation of fine carbides by a diffusion mechanism during tempering.

Keywords: Cryogenic treatment, valve steel, Fractograph, carbides, impact strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4487
172 Modeling Residential Space Heating Energy for Romania

Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala

Abstract:

This paper proposes a linear model for optimizing domestic energy consumption in Romania. The particularity of the model is that it is putting in competition both tangible technologies and thermal insulation projects with different financing modes. The model is optimizing the energy system by minimizing the global discounted cost in household sector, by integrating residential lighting, space heating, hot water, combined space heating – hot water, as well as space cooling, in a monolithic model. Another demand sector included is the passenger transport. This paper focuses on space heating part, analyzing technical and economic issues related to investment decisions to envelope and insulate buildings, in order to minimize energy consumption.

Keywords: Consumer behavior, energy modelling, Open Source Energy Modeling System (OSeMOSYS), MARKAL/TIMES Romanian energy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
171 Design and Construction of an Impulse Current Generator for Lightning Strike Experiments

Authors: Kamran Yousefpour, Mojtaba Rostaghi-Chalaki, Jason Warden, David Wallace, Chanyeop Park

Abstract:

There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present an impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present an impulse current generator developed at the High Voltage Lab of Mississippi State University.

Keywords: impulse current generator, lightning, society of automotive engineers, capacitor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
170 Heat Recovery System from Air-Cooled Chillers in Iranian Hospitals

Authors: Saeed Vahidifar, Mohammad Nakhaee Sharif, Mohammad Ghaffari

Abstract:

Few people would dispute the fact that one of the most common applications of energy is creating comfort in buildings, so it is probably true to say that management of energy consumption is required due to the environmental issues and increasing the efficiency of mechanical systems. From the geographical point of view, Iran is located in a warm and semi-arid region; therefore, air-cooled chillers are usually used for cooling residential buildings, commercial buildings, medical buildings, etc. In this study, a heat exchanger was designed for providing laundry hot water by utilizing condenser heat lost base on analytical results of a 540-bed hospital in the city of Mashhad in Iran. In this paper, by using the analytical method, energy consumption reduces about 13%, and coefficient of performance increases a bit. Results show that this method can help in the management of energy consumption a lot.

Keywords: Energy management, air-cooled chiller, heat exchanger, hospital laundry system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
169 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

Authors: Leila Torkaman, Nasser Ghassembaglou

Abstract:

Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration, and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified; finally needed methods to optimize energy consumption and coolers’ classification are provided.

Keywords: Cooler, EER, Energy Label, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
168 Biography of the Earth in the Light of the Laws of Classical Physics

Authors: I. V. Kuzminov

Abstract:

The proposed article is an analytical review of previously published articles in the series "Physics of Gravity", "The Picture of the World by Second Law of Thermodynamics" and others. The article shows the key role of the forces of gravity and the action of the second law of thermodynamics in shaping the picture of the world. In other words, the second law of thermodynamics can be called the law of matter cooling. The action in the compartment of the inverse temperature dependence of the forces of gravity and the second law of thermodynamics is carried out by the processes of separation, condensation, phase transitions, and transformation of matter. On the basis of the proposed concept, along the way, completely new versions of the development of events in the biography of the Earth are put forward. For example, new versions of the origin of planets, the origin of continents and others are being put forward. This article contains a list of articles and videos that are somehow related to the proposed topic. Articles and videos are presented in English and Russian.

Keywords: Gravity, the second law of thermodynamics, electron rotation, inverse temperature dependence, inertia forces, centrifugal forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48
167 Correlation between Capacitance and Dissipation Factor used for Assessment of Stator Insulation

Authors: José Luis Oslinger, Luis Carlos Castro

Abstract:

Measurements of capacitance C and dissipation factor tand of the stator insulation system provide useful information about internal defects within the insulation. The index k is defined as the proportionality constant between the changes at high voltage of capacitance DC and of the dissipation factor Dtand . DC and Dtand values were highly correlated when small flat defects were within the insulation and that correlation was lost in the presence of large narrow defects like electrical treeing. The discrimination between small and large defects is made resorting to partial discharge PD phase angle analysis. For the validation of the results, C and tand measurements were carried out in a 15MVA 4160V steam turbine turbogenerator placed in a sugar mill. In addition, laboratory test results obtained by other authors were analyzed jointly. In such laboratory tests, model coil bars subjected to thermal cycling resulted highly degraded and DC and Dtand values were not correlated. Thus, the index k could not be calculated.

Keywords: Aging, capacitance, dissipation factor, electrical treeing, insulation condition, partial discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914
166 Forming of Nanodimentional Structure Parts in Carbon Steels

Authors: A. Korchunov, M. Chukin, N. Koptseva, M. Polyakova, A. Gulin

Abstract:

A way of achieving nanodimentional structural elements in high carbon steel by special kind of heat treatment and cold plastic deformation is being explored. This leads to increasing interlamellar spacing of ferrite-carbide mixture. Decreasing the interlamellar spacing with cooling temperature increasing is determined. Experiments confirm such interlamellar spacing with which high carbon steel demonstrates the highest treatment and hardening capability. Total deformation degree effect on interlamellar spacing value in a ferrite-carbide mixture is obtained. Mechanical experiments results show that high carbon steel after heat treatment and repetitive cold plastic deformation possesses high tensile strength and yield strength keeping good percentage elongation.

Keywords: High-carbon steel, nanodimensional structural element, interlamellar spacing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
165 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: Building energy management, machine learning, simulation-based optimization, operation planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954
164 Solar Architecture of Low-Energy Buildings for Industrial Applications

Authors: P. Brinks, O. Kornadt, R. Oly

Abstract:

This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly energy saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights.

Keywords: Solar Architecture, Passive Solar Building Design, Glazing, Low-Energy Buildings, Industrial Buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
163 School Design and Energy Efficiency

Authors: B. Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only need heating during the winter. The space hating energy is the major portion of winter school energy consumption and the winter energy consumption is major portion of annual school energy consumption. School building thermal design should focus on the winter thermal performance for reducing the space heating energy. A number of Auckland schools- design data and energy consumption data are used for this study. This pilot study investigates the relationships between their energy consumption data and school building design data to improve future school design for energy efficiency.

Keywords: Building energy efficiency, building thermal performance, school building design, school energy consumption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
162 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions

Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz

Abstract:

This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.

Keywords: Absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
161 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.

Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4872
160 Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process

Authors: Alluru Gopala Krishna, Thella Babu Rao

Abstract:

In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant.

Keywords: CNT based nanocoolant, turning, tool wear, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
159 Disinfestation of Wheat Using Liquid Nitrogen Aeration

Authors: Haiyan. Li, Jitendra. Paliwal, Digvir S. Jayas, Noel D. G. White

Abstract:

A study was undertaken to investigate the effect of liquid nitrogen aeration on mortalities of adult Cryptolestes furrugineus, rusty grain beetles, in a prototype cardboard grain bin equipped with an aeration system. The grain bin was filled with Hard Red Spring wheat and liquid nitrogen was introduced from the bottom of the bin. The survival of both cold acclimated and unacclimated C. furrugineus was tested. The study reveals that cold acclimated insects had higher survival than unacclimated insects under similar cooling conditions. In most cases, mortalities of as high as 100% were achieved at the bottom 100 cm of the grain bin for unacclimated insects for most of the trials. Insect survival increased as the distance from the bottom of the grain bin increased. There was no adverse effect of liquid nitrogen aeration on wheat germination.

Keywords: Cold acclimated, liquid nitrogen aeration, mortalities, rusty grain beetles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
158 Passive Ventilation System Analysis using Solar Chimney in South of Algeria

Authors: B. Belfuguais, S. Larbi

Abstract:

The work presented in this study is related to an energy system analysis based on passive cooling system for dwellings. It consists to solar chimney energy performances determination versus geometrical and environmental considerations as the size and inlet width conditions of the chimney. Adrar site located in the southern region of Algeria is chosen for this study according to ambient temperature and solar irradiance technical data availability. Obtained results are related to the glazing temperature distributions, the chimney air flow and internal wall temperatures. The air room change per hour (ACH) parameter, the outlet air velocity and mass air flow rate are also determined. It is shown that the chimney width has a significant effect on energy performances compared to its entry size. A good agreement is observed between these results and those obtained by others from the literature.

Keywords: Solar chimney, Energy performances, Passive ventilation, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893
157 Influence of Differences of Heat Insulation Methods on Thermal Comfort of Apartment Buildings

Authors: Hikaru Sato, Hiroatsu Fukuda, Yupeng Wang

Abstract:

The aim of this study is to analyze influence of differences of heat insulation methods on indoor thermal environment and comfort of apartment buildings. This study analyzes indoor thermal environment and comfort on units of apartment buildings using calculation software "THERB" and compares three different kinds of heat insulation methods. Those are outside insulation on outside walls, inside insulation on outside walls and interior insulation. In terms of indoor thermal environment, outside insulation is the best to stabilize room temperature. In winter, room temperature on outside insulation after heating is higher than other and it is kept 3-5 degrees higher through all night. But the surface temperature with outside insulation did not dramatically increase when heating was used, which was 3 to 5oC lower than the temperature with other insulation. The PMV of interior insulation fall nearly range of comfort when the heating and cooling was use.

Keywords: Apartment Building, Indoor Thermal Environment, Insulation, PMV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
156 Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator

Authors: Petter Eklund, Jonathan Sjölund, Sandra Eriksson, Mats Leijon

Abstract:

The spoke type rotor can be used to obtain magnetic flux concentration in permanent magnet machines. This allows the air gap magnetic flux density to exceed the remanent flux density of the permanent magnets but gives problems with leakage fluxes in the magnetic circuit. The end leakage flux of one spoke type permanent magnet rotor design is studied through measurements and finite element simulations. The measurements are performed in the end regions of a 12 kW prototype generator for a vertical axis wind turbine. The simulations are made using three dimensional finite elements to calculate the magnetic field distribution in the end regions of the machine. Also two dimensional finite element simulations are performed and the impact of the two dimensional approximation is studied. It is found that the magnetic leakage flux in the end regions of the machine is equal to about 20% of the flux in the permanent magnets. The overestimation of the performance by the two dimensional approximation is quantified and a curve-fitted expression for its behavior is suggested.

Keywords: End effects, end leakage flux, permanent magnet machine, spoke type rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
155 Design and Analysis of Annular Combustion Chamber for a Micro Turbojet Engine

Authors: Rashid Slaheldinn Elhaj Mohammed

Abstract:

The design of high performance combustion chambers for turbojet engines is considered as one of the most challenges that face gas turbine designers, since the design approach depends on empirical correlations of data derived from the previous design experiences. The objective of this paper is to design a combustion chamber that suits the requirements of a micro-turbojet engine with 400 N output thrust and operates with kerosene as fuel. In this paper, only preliminary calculations related to the annular type of combustion chamber are explained in details. These calculations will cover the evaluation of reference quantities, calculation of required dimensions, calculation of air distribution and pressure drop, estimation of number and diameters for air admission holes, as well as aerodynamic considerations. The design process is then accompanied by analytical procedure using commercial CFD ANALYSIS tool; ANSYS 16 CFX software. After conducting CFD analysis, the design process will be then iterated in order to gain satisfactory results. It should be noted that the design of the fuel preparation and installation systems is beyond the scope of this work, and it will be discussed separately in another work.  

Keywords: Annular combustion chamber, micro-turbojet engine, CFD ANALYSIS, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
154 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines

Authors: Anis Gharbi

Abstract:

This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.

Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
153 Enhancing Thermal Efficiency of Double Skin Façade Buildings in Semi-Arid Climate

Authors: Farid Vahedi

Abstract:

There is a great deal of interest in constructing Double Skin Facade (DSF) structures which are considered as modern movement in field of Energy Conservation, renewable energies, and Architecture design. This trend provides many conclusive alternatives which are frequently associated with sustainable building. In this paper a building with Double Skin Facade is considered in the semiarid climate of Tehran, Iran, in order to consider the DSF-s performance during hot seasons. Mathematical formulations calculate solar heat gain by the external skin. Moreover, Computational Fluid Dynamics (CFD) simulations were performed on the case study building to enhance effectiveness of the facade. The conclusion divulged difference of gained energy by the cavity and room with and without blind and louvers. Some solutions were introduced to surge the performance of natural ventilation by plunging the cooling loads in summer.

Keywords: Double Skin Façade Buildings, Energy Conservation, Renewable Energy, Natural Ventilation, Semi-arid Climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5386
152 A Reproduction of Boundary Conditions in Three-Dimensional Continuous Casting Problem

Authors: Iwona Nowak, Jacek Smolka, Andrzej J. Nowak

Abstract:

The paper discusses a 3D numerical solution of the inverse boundary problem for a continuous casting process of alloy. The main goal of the analysis presented within the paper was to estimate heat fluxes along the external surface of the ingot. The verified information on these fluxes was crucial for a good design of a mould, effective cooling system and generally the whole caster. In the study an enthalpy-porosity technique implemented in Fluent package was used for modeling the solidification process. In this method, the phase change interface was determined on the basis of the liquid fraction approach. In inverse procedure the sensitivity analysis was applied for retrieving boundary conditions. A comparison of the measured and retrieved values showed a high accuracy of the computations. Additionally, the influence of the accuracy of measurements on the estimated heat fluxes was also investigated.

Keywords: Boundary inverse problem, sensitivity analysis, continuous casting, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
151 Investigation on the HRSG Installation at South Pars Gas Complex Phases 2&3

Authors: R. Moradifar, M. Masahebfard, M. Zahir

Abstract:

In this article the investigation about installation heat recovery steam generation (HRSG) on the exhaust of turbo generators of phases 2&3 at South Pars Gas Complex is presented. The temperature of exhaust gas is approximately 665 degree centigrade, Installation of heat recovery boiler was simulated in ThermoFlow 17.0.2 software, based on test operation data and the equipments site operation conditions in Pars exclusive economical energy area, the affect of installation HRSG package on the available gas turbine and its operation parameters, ambient temperature, the exhaust temperatures steam flow rate were investigated. Base on the results recommended HRSG package should have the capacity for 98 ton per hour high pressure steam generation this refinery, by use of exhaust of three gas turbines for each package in operation condition of each refinery at 30 degree centigrade. Besides saving energy this project will be an Environment-Friendly project. The Payback Period is estimated approximately 1.8 year, with considering Clean Development Mechanism.

Keywords: HRSG, South pars Gas complex, ThermoFlow 17.0.2 software, energy, turbo generators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320
150 Air flow and Heat Transfer Modeling of an Axial Flux Permanent Magnet Generator

Authors: Airoldi G., Bumby J. R., Dominy C., G.L. Ingram, Lim C. H., Mahkamov K., N. L. Brown, A. Mebarki, M. Shanel

Abstract:

Axial Flux Permanent Magnet (AFPM) Machines require effective cooling due to their high power density. The detrimental effects of overheating such as degradation of the insulation materials, magnets demagnetization, and increase of Joule losses are well known. This paper describes the CFD simulations performed on a test rig model of an air cooled Axial Flux Permanent Magnet (AFPM) generator built at Durham University to identify the temperatures and heat transfer coefficient on the stator. The Reynolds Averaged Navier-Stokes and the Energy equations are solved and the flow pattern and heat transfer developing inside the machine are described. The Nusselt number on the stator surfaces has been found. The dependency of the heat transfer on the flow field is described temperature field obtained. Tests on an experimental are undergoing in order to validate the CFD results.

Keywords: Axial flux permanent magnet machines, thermal modeling, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
149 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.

Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
148 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai

Abstract:

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.

Keywords: Stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
147 The Energy Impacts of Using Top-Light Daylighting Systems for Academic Buildings in Tropical Climate

Authors: M. S. Alrubaih, M. F. M. Zain, N. L. N. Ibrahim, M.A. Alghoul, K. I. Ben Sauod

Abstract:

Careful design and selection of daylighting systems can greatly help in reducing not only artificial lighting use, but also decrease cooling energy consumption and, therefore, potential for downsizing air-conditioning systems. This paper aims to evaluate the energy performance of two types of top-light daylighting systems due to the integration of daylight together with artificial lighting in an existing examinaton hall in University Kebangsaan Malaysia, based on a hot and humid climate. Computer simulation models have been created for building case study (base case) and the two types of toplight daylighting designs for building energy performance evaluation using the VisualDOE 4.0 building energy simulation program. The finding revealed that daylighting through top-light systems is a very beneficial design strategy in reducing annual lighting energy consumption and the overall total annual energy consumption.

Keywords: Academic buildings, Daylighting, Top-lighting, Energy savings, Tropical Climate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
146 Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency

Authors: Abdulrahman M. Homadi

Abstract:

As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 o. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels.

Keywords: Solar panels, elevation, wind direction, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340