Search results for: Least Squares Support Vector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2459

Search results for: Least Squares Support Vector

1949 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors

Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad

Abstract:

In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.

Keywords: Adaptive filter, affine projection, selective regressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1948 Development of a Mobile Image-Based Reminder Application to Support Tuberculosis Treatment in Africa

Authors: Haji Ali Haji, Hussein Suleman, Ulrike Rivett

Abstract:

This paper presents the design, development and evaluation of an application prototype developed to support tuberculosis (TB) patients’ treatment adherence. The system makes use of graphics and voice reminders as opposed to text messaging to encourage patients to follow their medication routine. To evaluate the effect of the prototype applications, participants were given mobile phones on which the reminder system was installed. Thirty-eight people, including TB health workers and patients from Zanzibar, Tanzania, participated in the evaluation exercises. The results indicate that the participants found the mobile image-based application is useful to support TB treatment. All participants understood and interpreted the intended meaning of every image correctly. The study findings revealed that the use of a mobile visualbased application may have potential benefit to support TB patients (both literate and illiterate) in their treatment processes.

Keywords: ICT4D, mobile technology, tuberculosis, visualbased reminder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
1947 Academic Program Administration via Semantic Web – A Case Study

Authors: Qurban A Memon, Shakeel A. Khoja

Abstract:

Generally, administrative systems in an academic environment are disjoint and support independent queries. The objective in this work is to semantically connect these independent systems to provide support to queries run on the integrated platform. The proposed framework, by enriching educational material in the legacy systems, provides a value-added semantics layer where activities such as annotation, query and reasoning can be carried out to support management requirements. We discuss the development of this ontology framework with a case study of UAE University program administration to show how semantic web technologies can be used by administration to develop student profiles for better academic program management.

Keywords: Academic Program Administration, Semantic Web, Web Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1946 Multi-Agent Based Modeling Using Multi-Criteria Decision Analysis and OLAP System for Decision Support Problems

Authors: Omar Boutkhoum, Mohamed Hanine, Tarik Agouti, Abdessadek Tikniouine

Abstract:

This paper discusses the intake of combining multi-criteria decision analysis (MCDA) with OLAP systems, to generate an integrated analysis process dealing with complex multi-criteria decision-making situations. In this context, a multi-agent modeling is presented for decision support systems by combining multi-criteria decision analysis (MCDA) with OLAP systems. The proposed modeling which consists in performing the multi-agent system (MAS) architecture, procedure and protocol of the negotiation model is elaborated as a decision support tool for complex decision-making environments. Our objective is to take advantage from the multi-agent system which distributes resources and computational capabilities across interconnected agents, and provide a problem modeling in terms of autonomous interacting component-agents. Thus, the identification and evaluation of criteria as well as the evaluation and ranking of alternatives in a decision support situation will be performed by organizing tasks and user preferences between different agents in order to reach the right decision. At the end, an illustrative example is conducted to demonstrate the function and effectiveness of our MAS modeling.

Keywords: Multidimensional Analysis, OLAP Analysis, Multi-criteria Decision Analysis, Multi-Agent System, Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1945 Impact of Government Spending on Private Consumption and on the Economy: Case of Thailand

Authors: Paitoon Kraipornsak

Abstract:

The recent global financial problem urges government to play role in stimulating the economy due to the fact that private sector has little ability to purchase during the recession. A concerned question is whether the increased government spending crowds out private consumption and whether it helps stimulate the economy. If the government spending policy is effective; the private consumption is expected to increase and can compensate the recent extra government expense. In this study, the government spending is categorized into government consumption spending and government capital spending. The study firstly examines consumer consumption along the line with the demand function in microeconomic theory. Three categories of private consumption are used in the study. Those are food consumption, non food consumption, and services consumption. The dynamic Almost Ideal Demand System of the three categories of the private consumption is estimated using the Vector Error Correction Mechanism model. The estimated model indicates the substituting effects (negative impacts) of the government consumption spending on budget shares of private non food consumption and of the government capital spending on budget share of private food consumption, respectively. Nevertheless the result does not necessarily indicate whether the negative effects of changes in the budget shares of the non food and the food consumption means fallen total private consumption. Microeconomic consumer demand analysis clearly indicates changes in component structure of aggregate expenditure in the economy as a result of the government spending policy. The macroeconomic concept of aggregate demand comprising consumption, investment, government spending (the government consumption spending and the government capital spending), export, and import are used to estimate for their relationship using the Vector Error Correction Mechanism model. The macroeconomic study found no effect of the government capital spending on either the private consumption or the growth of GDP while the government consumption spending has negative effect on the growth of GDP. Therefore no crowding out effect of the government spending is found on the private consumption but it is ineffective and even inefficient expenditure as found reducing growth of the GDP in the context of Thailand.

Keywords: government consumption spending, governmentcapital spending, private consumption on food, non food, andservices, Vector Error Correction Mechanism, Almost Ideal DemandSystem, substitution effect, complementary effect, consumer demand, aggregate demand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
1944 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1943 Production of H5N1 Hemagglutinin inTrichoplusia ni Larvae by a Novel Bi-cistronic Baculovirus Expression Vector

Authors: Tzyy Rong Jinn, Nguyen Tiep Khac, Tzong Yuan Wu

Abstract:

Highly pathogenic avian influenza (HPAI) H5N1 viruses have created demand for a cost-effective vaccine to prevent a pandemic of the disease. Here, we report that Trichoplusia ni (T. ni) larvae can act as a cost-effective bioreactor to produce recombinant HA5 (rH5HA) proteins as an potential effective vaccine for chickens. To facilitate the recombinant virus identification, virus titer determination and access the infected larvae, we employed the internal ribosome entry site (IRES) derived from Perina nuda virus (PnV, belongs to insect picorna like Iflavirus genus) to construct a bi-cistronic baculovirus expression vector that can express the rH5HA protein and enhanced green fluorescent protein (EGFP) simultaneously. Western blot analysis revealed that the 70 kDa rH5HA protein and partially cleaved products (40 kDa H5HA1) were generated in T. ni larvae infected with recombinant baculovirus carrying the H5HA gene. These data suggest that the baculovirus-larvae recombinant protein expression system could be a cost-effective platform for H5N1 vaccine production.

Keywords: Avian Influenza, baculovirus, hemagglutinin, Trichoplusia ni larvae

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
1942 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, Gene Signature, SAM, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1941 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
1940 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
1939 ERP Implementation Success in Iran: Examining the Role of System Environment Factors

Authors: Shahin Dezdar, Sulaiman Ainin

Abstract:

The aim of this paper is to examine factors related to system environment (namely, system quality and vendor support) that influences ERP implementation success in Iranian companies. Implementation success is identified using user satisfaction and organizational impact perspective. The study adopts the survey questionnaire approach to collect empirical data. The questionnaire was distributed to ERP users and a total of 384 responses were used for analysis. The results illustrated that both system quality and vendor support have significant effect on ERP implementation success. This implies that companies must ensure they source for the best available system and a vendor that is dependable, reliable and trustworthy.

Keywords: Enterprise resource planning (ERP), Iran, system quality, vendor support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2993
1938 Drowsiness Warning System Using Artificial Intelligence

Authors: Nidhi Sharma, V. K. Banga

Abstract:

Nowadays, driving support systems, such as car navigation systems, are getting common, and they support drivers in several aspects. It is important for driving support systems to detect status of driver's consciousness. Particularly, detecting driver's drowsiness could prevent drivers from collisions caused by drowsy driving. In this paper, we discuss the various artificial detection methods for detecting driver's drowsiness processing technique. This system is based on facial images analysis for warning the driver of drowsiness or in attention to prevent traffic accidents.

Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-FelixModel, Bailey-Basili Model, Doty Model, GA Based Model, GeneticAlgorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3711
1937 The Relative Efficiency of Parameter Estimation in Linear Weighted Regression

Authors: Baoguang Tian, Nan Chen

Abstract:

A new relative efficiency in linear model in reference is instructed into the linear weighted regression, and its upper and lower bound are proposed. In the linear weighted regression model, for the best linear unbiased estimation of mean matrix respect to the least-squares estimation, two new relative efficiencies are given, and their upper and lower bounds are also studied.

Keywords: Linear weighted regression, Relative efficiency, Mean matrix, Trace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1936 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
1935 Development of Decision Support System for House Evaluation and Purchasing

Authors: Chia-Yu Hsu, Julaimin Goh, Pei-Chann Chang

Abstract:

Home is important for Chinese people. Because the information regarding the house attributes and surrounding environments is incomplete in most real estate agency, most house buyers are difficult to consider the overall factors effectively and only can search candidates by sorting-based approach. This study aims to develop a decision support system for housing purchasing, in which surrounding facilities of each house are quantified. Then, all considered house factors and customer preferences are incorporated into Simple Multi-Attribute Ranking Technique (SMART) to support the housing evaluation. To evaluate the validity of proposed approach, an empirical study was conducted from a real estate agency. Based on the customer requirement and preferences, the proposed approach can identify better candidate house with consider the overall house attributes and surrounding facilities.

Keywords: decision support system, real estate, decision analysis, housing evaluation, SMART

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
1934 Development of Circulating Support Environment of Multilingual Medical Communication using Parallel Texts for Foreign Patients

Authors: Mai Miyabe, Taku Fukushima, Takashi Yoshino, Aguri Shigeno

Abstract:

The need for multilingual communication in Japan has increased due to an increase in the number of foreigners in the country. When people communicate in their nonnative language, the differences in language prevent mutual understanding among the communicating individuals. In the medical field, communication between the hospital staff and patients is a serious problem. Currently, medical translators accompany patients to medical care facilities, and the demand for medical translators is increasing. However, medical translators cannot necessarily provide support, especially in cases in which round-the-clock support is required or in case of emergencies. The medical field has high expectations from information technology. Hence, a system that supports accurate multilingual communication is required. Despite recent advances in machine translation technology, it is very difficult to obtain highly accurate translations. We have developed a support system called M3 for multilingual medical reception. M3 provides support functions that aid foreign patients in the following respects: conversation, questionnaires, reception procedures, and hospital navigation; it also has a Q&A function. Users can operate M3 using a touch screen and receive text-based support. In addition, M3 uses accurate translation tools called parallel texts to facilitate reliable communication through conversations between the hospital staff and the patients. However, if there is no parallel text that expresses what users want to communicate, the users cannot communicate. In this study, we have developed a circulating support environment for multilingual medical communication using parallel texts. The proposed environment can circulate necessary parallel texts through the following procedure: (1) a user provides feedback about the necessary parallel texts, following which (2) these parallel texts are created and evaluated.

Keywords: multilingual medical communication, parallel texts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
1933 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: Dimensional affect prediction, Output-associative RVM, Multivariate regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1932 (Anti)Depressant Effects of Non-Steroidal Antiinflammatory Drugs in Mice

Authors: Horia Păunescu

Abstract:

Purpose: The study aimed to assess the depressant or antidepressant effects of several Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in mice: the selective cyclooxygenase-2 (COX-2) inhibitor meloxicam, and the non-selective COX-1 and COX-2 inhibitors lornoxicam, sodium metamizole, and ketorolac. The current literature data regarding such effects of these agents are scarce. Materials and methods: The study was carried out on NMRI mice weighing 20-35 g, kept in a standard laboratory environment. The study was approved by the Ethics Committee of the University of Medicine and Pharmacy „Carol Davila”, Bucharest. The study agents were injected intraperitoneally, 10 mL/kg body weight (bw) 1 hour before the assessment of the locomotor activity by cage testing (n=10 mice/ group) and 2 hours before the forced swimming tests (n=15). The study agents were dissolved in normal saline (meloxicam, sodium metamizole), ethanol 11.8% v/v in normal saline (ketorolac), or water (lornoxicam), respectively. Negative and positive control agents were also given (amitryptilline in the forced swimming test). The cage floor used in the locomotor activity assessment was divided into 20 equal 10 cm squares. The forced swimming test involved partial immersion of the mice in cylinders (15/9cm height/diameter) filled with water (10 cm depth at 28C), where they were left for 6 minutes. The cage endpoint used in the locomotor activity assessment was the number of treaded squares. Four endpoints were used in the forced swimming test (immobility latency for the entire 6 minutes, and immobility, swimming, and climbing scores for the final 4 minutes of the swimming session), recorded by an observer that was „blinded” to the experimental design. The statistical analysis used the Levene test for variance homogeneity, ANOVA and post-hoc analysis as appropriate, Tukey or Tamhane tests. Results: No statistically significant increase or decrease in the number of treaded squares was seen in the locomotor activity assessment of any mice group. In the forced swimming test, amitryptilline showed an antidepressant effect in each experiment, at the 10 mg/kg bw dosage. Sodium metamizole was depressant at 100 mg/kg bw (increased the immobility score, p=0.049, Tamhane test), but not in lower dosages as well (25 and 50 mg/kg bw). Ketorolac showed an antidepressant effect at the intermediate dosage of 5 mg/kg bw, but not so in the dosages of 2.5 and 10 mg/kg bw, respectively (increased the swimming score, p=0.012, Tamhane test). Meloxicam and lornoxicam did not alter the forced swimming endpoints at any dosage level. Discussion: 1) Certain NSAIDs caused changes in the forced swimming patterns without interfering with locomotion. 2) Sodium metamizole showed a depressant effect, whereas ketorolac proved antidepressant. Conclusion: NSAID-induced mood changes are not class effects of these agents and apparently are independent of the type of inhibited cyclooxygenase (COX-1 or COX-2). Disclosure: This paper was co-financed from the European Social Fund, through the Sectorial Operational Programme Human Resources Development 2007-2013, project number POSDRU /159 /1.5 /S /138907 "Excellence in scientific interdisciplinary research, doctoral and postdoctoral, in the economic, social and medical fields -EXCELIS", coordinator The Bucharest University of Economic Studies.

Keywords: Antidepressant, depressant, forced swim, NSAIDs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
1931 An Incomplete Factorization Preconditioner for LMS Adaptive Filter

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

In this paper an efficient incomplete factorization preconditioner is proposed for the Least Mean Squares (LMS) adaptive filter. The proposed preconditioner is approximated from a priori knowledge of the factors of input correlation matrix with an incomplete strategy, motivated by the sparsity patter of the upper triangular factor in the QRD-RLS algorithm. The convergence properties of IPLMS algorithm are comparable with those of transform domain LMS(TDLMS) algorithm. Simulation results show efficiency and robustness of the proposed algorithm with reduced computational complexity.

Keywords: Autocorrelation matrix, Cholesky's factor, eigenvalue spread, Markov input.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1930 Identification of Most Frequently Occurring Lexis in Winnings-announcing Unsolicited Bulke-mails

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

e-mail has become an important means of electronic communication but the viability of its usage is marred by Unsolicited Bulk e-mail (UBE) messages. UBE consists of many types like pornographic, virus infected and 'cry-for-help' messages as well as fake and fraudulent offers for jobs, winnings and medicines. UBE poses technical and socio-economic challenges to usage of e-mails. To meet this challenge and combat this menace, we need to understand UBE. Towards this end, the current paper presents a content-based textual analysis of nearly 3000 winnings-announcing UBE. Technically, this is an application of Text Parsing and Tokenization for an un-structured textual document and we approach it using Bag Of Words (BOW) and Vector Space Document Model techniques. We have attempted to identify the most frequently occurring lexis in the winnings-announcing UBE documents. The analysis of such top 100 lexis is also presented. We exhibit the relationship between occurrence of a word from the identified lexisset in the given UBE and the probability that the given UBE will be the one announcing fake winnings. To the best of our knowledge and survey of related literature, this is the first formal attempt for identification of most frequently occurring lexis in winningsannouncing UBE by its textual analysis. Finally, this is a sincere attempt to bring about alertness against and mitigate the threat of such luring but fake UBE.

Keywords: Lexis, Unsolicited Bulk e-mail (UBE), Vector SpaceDocument Model, Winnings, Lottery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
1929 Improving the Quality of Transport Management Services with Fuzzy Signatures

Authors: Csaba I. Hencz, István Á. Harmati

Abstract:

Nowadays the significance of road transport is gradually increasing. All transport companies are working in the same external environment where the speed of transport is defined by traffic rules. The main objective is to accelerate the speed of service and it is only dependent on the individual abilities of the managing members. These operational control units make decisions quickly (in a typically experiential and/or intuitive way). For this reason, support for these decisions is an important task. Our goal is to create a decision support model based on fuzzy signatures that can assist the work of operational management automatically. If the model sets parameters properly, the management of transport could be more economical and efficient.

Keywords: Freight transport, decision support, information handling, fuzzy methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
1928 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1927 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1926 The Use of Recommender Systems in Decision Support–A Case Study on Used Car Dealers

Authors: Nalinee Sophatsathit

Abstract:

This research focuses on the use of a recommender system in decision support by means of a used car dealer case study in Bangkok Metropolitan. The goal is to develop an effective used car purchasing system for dealers based on the above premise. The underlying principle rests on content-based recommendation from a set of usability surveys. A prototype was developed to conduct buyers- survey selected from 5 experts and 95 general public. The responses were analyzed to determine the mean and standard deviation of buyers- preference. The results revealed that both groups were in favor of using the proposed system to assist their buying decision. This indicates that the proposed system is meritorious to used car dealers.

Keywords: Recommender Systems, Decision Support, Content- Based Recommendation, used car dealer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
1925 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)

Authors: Vassilios Moussas, Dimos N. Pantazis, Panagiotis Stratakis

Abstract:

The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.

Keywords: Coastal transport, modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
1924 Decision Support System for Farm Management

Authors: Manpreet Singh, Parvinder Singh, Sumitter Bir Singh

Abstract:

The emergence of information technology has resulted in an ever-increasing demand to use computers for the efficient management and dissemination of information. Keeping in view the strong need of farmers to collect important and updated information for interactive, flexible and quick decision-making, a model of Decision Support System for Farm Management is developed. The paper discusses the use of Internet technology for the farmers to take decisions. A model is developed for the farmers to access online interactive and flexible information for their farm management. The workflow of the model is presented highlighting the information transfer between different modules.

Keywords: Decision Support System, dissemination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021
1923 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
1922 Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

Authors: Ahmed M. Hemeida, Wael A. Farag, Osama A. Mahgoub

Abstract:

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.

Keywords: FAST, Permanent Magnet Synchronous Generator(PMSG), TurbSim, Vector Control and Pitch Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5609
1921 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes

Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari

Abstract:

The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.

Keywords: Arabic Language acquisition and learning, natural language processing, morphological analyzer, part-of-speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
1920 Comparison of the Amount of Resources and Expansion Support Policy of Photovoltaic Power Generation: A Case on Hokkaido and Aichi Prefecture, Japan

Authors: Hiroaki Sumi, Kiichiro Hayashi

Abstract:

Now, the use of renewable energy power generation has been advanced. In this paper, we compared the usable amount of resource for photovoltaic power generation which was estimated using the NEDO formula and the expansion support policy of photovoltaic power generation which was researched using Internet in the municipality level in Hokkaido and Aichi Prefecture, Japan. This paper will contribute to grasp the current situation especially about the policy. As a result, there were municipalities which seemed to be no consideration of fitting the amount of resources. We think it would need to consider the suitability between the resources and policies.

Keywords: Photovoltaic power generation, expansion support policy, amount of resources, Japan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273