Search results for: Lottery
2 Some (v + 1, b + r + λ + 1, r + λ + 1, k, λ + 1) Balanced Incomplete Block Designs (BIBDs) from Lotto Designs (LDs)
Authors: Oluwaseun. A. Alawode, Timothy. A. Bamiduro, Adekunle. A. Eludire
Abstract:
The paper considered the construction of BIBDs using potential Lotto Designs (LDs) earlier derived from qualifying parent BIBDs. The study utilized Li’s condition pr t−1 ( t−1 2 ) + pr− pr t−1 (t−1) 2 < ( p 2 ) λ, to determine the qualification of a parent BIBD (v, b, r, k, λ) as LD (n, k, p, t) constrained on v ≥ k, v ≥ p, t ≤ min{k, p} and then considered the case k = t since t is the smallest number of tickets that can guarantee a win in a lottery. The (15, 140, 28, 3, 4) and (7, 7, 3, 3, 1) BIBDs were selected as parent BIBDs to illustrate the procedure. These BIBDs yielded three potential LDs each. Each of the LDs was completely generated and their properties studied. The three LDs from the (15, 140, 28, 3, 4) produced (9, 84, 28, 3, 7), (10, 120, 36, 3, 8) and (11, 165, 45, 3, 9) BIBDs while those from the (7, 7, 3, 3, 1) produced the (5, 10, 6, 3, 3), (6, 20, 10, 3, 4) and (7, 35, 15, 3, 5) BIBDs. The produced BIBDs follow the generalization (v + 1, b + r + λ + 1, r +λ+1, k, λ+1) where (v, b, r, k, λ) are the parameters of the (9, 84, 28, 3, 7) and (5, 10, 6, 3, 3) BIBDs. All the BIBDs produced are unreduced designs.
Keywords: Balanced Incomplete Block Designs, Lotto Designs, Unreduced Designs, Lottery games.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40891 Identification of Most Frequently Occurring Lexis in Winnings-announcing Unsolicited Bulke-mails
Authors: Jatinderkumar R. Saini, Apurva A. Desai
Abstract:
e-mail has become an important means of electronic communication but the viability of its usage is marred by Unsolicited Bulk e-mail (UBE) messages. UBE consists of many types like pornographic, virus infected and 'cry-for-help' messages as well as fake and fraudulent offers for jobs, winnings and medicines. UBE poses technical and socio-economic challenges to usage of e-mails. To meet this challenge and combat this menace, we need to understand UBE. Towards this end, the current paper presents a content-based textual analysis of nearly 3000 winnings-announcing UBE. Technically, this is an application of Text Parsing and Tokenization for an un-structured textual document and we approach it using Bag Of Words (BOW) and Vector Space Document Model techniques. We have attempted to identify the most frequently occurring lexis in the winnings-announcing UBE documents. The analysis of such top 100 lexis is also presented. We exhibit the relationship between occurrence of a word from the identified lexisset in the given UBE and the probability that the given UBE will be the one announcing fake winnings. To the best of our knowledge and survey of related literature, this is the first formal attempt for identification of most frequently occurring lexis in winningsannouncing UBE by its textual analysis. Finally, this is a sincere attempt to bring about alertness against and mitigate the threat of such luring but fake UBE.Keywords: Lexis, Unsolicited Bulk e-mail (UBE), Vector SpaceDocument Model, Winnings, Lottery
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538