Search results for: Home Energy Controller
3327 Energy Consumptions of Different Building Heating Systems for Various Meteorological Regions of Iran: A Comparison Study
Authors: S. Kazemzadeh Hannani, A. Azimi, S. Nikoofard
Abstract:
To simulate heating systems in buildings, a research oriented computer code has been developed in Sharif University of Technology in Iran where the climate, existing heating equipment in buildings, consumer behavior and their interactions are considered for simulating energy consumption in conventional systems such as heaters, radiators and fan-coils. In order to validate the computer code, the available data of five buildings was used and the computed consumed energy was compared with the estimated energy extracted from monthly bills. The initial heating system was replaced by the alternative system and the effect of this change was observed on the energy consumption. As a result, the effect of changing heating equipment on energy consumption was investigated in different climates. Changing heater to radiator renders energy conservation up to 50% in all climates and changing radiator to fan-coil decreases energy consumption in climates with cold and dry winter.
Keywords: Energy consumption, heating system, energy simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12983326 Energy Consumptions of Different Building Heating Systems for Various Meteorological Regions of Iran: A Comparison Study
Authors: S. Kazemzadeh Hannani, A. Azimi, S. Nikoofard
Abstract:
To simulate heating systems in buildings, a research oriented computer code has been developed in Sharif University of Technology in Iran where the climate, existing heating equipment in buildings, consumer behavior and their interactions are considered for simulating energy consumption in conventional systems such as heaters, radiators and fan-coils. In order to validate the computer code, the available data of five buildings was used and the computed consumed energy was compared with the estimated energy extracted from monthly bills. The initial heating system was replaced by the alternative system and the effect of this change was observed on the energy consumption. As a result, the effect of changing heating equipment on energy consumption was investigated in different climates. Changing heater to radiator renders energy conservation up to 50% in all climates and changing radiator to fan-coil decreases energy consumption in climates with cold and dry winter.
Keywords: Energy consumption, heating system, energy simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21343325 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation
Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad
Abstract:
For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.Keywords: Biorobotics, rehabilitation, nonlinear control, robotic assistive device, exoskeleton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17243324 Modeling and Design of MPPT Controller Using Stepped P&O Algorithm in Solar Photovoltaic System
Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan
Abstract:
This paper presents modeling and simulation of Grid Connected Photovoltaic (PV) system by using improved mathematical model. The model is used to study different parameter variations and effects on the PV array including operating temperature and solar irradiation level. In this paper stepped P&O algorithm is proposed for MPPT control. This algorithm will identify the suitable duty ratio in which the DC-DC converter should be operated to maximize the power output. Photo voltaic array with proposed stepped P&O-MPPT controller can operate in the maximum power point for the whole range of solar data (irradiance and temperature).
Keywords: Photovoltaic (PV), Maximum Power Point Tracking (MPPT), Boost converter, Stepped Perturb & Observe method (Stepped P&O).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40113323 The Significance of Embodied Energy in Certified Passive Houses
Authors: Robert H. Crawford, André Stephan
Abstract:
Certifications such as the Passive House Standard aim to reduce the final space heating energy demand of residential buildings. Space conditioning, notably heating, is responsible for nearly 70% of final residential energy consumption in Europe. There is therefore significant scope for the reduction of energy consumption through improvements to the energy efficiency of residential buildings. However, these certifications totally overlook the energy embodied in the building materials used to achieve this greater operational energy efficiency. The large amount of insulation and the triple-glazed high efficiency windows require a significant amount of energy to manufacture. While some previous studies have assessed the life cycle energy demand of passive houses, including their embodied energy, these rely on incomplete assessment techniques which greatly underestimate embodied energy and can lead to misleading conclusions. This paper analyses the embodied and operational energy demands of a case study passive house using a comprehensive hybrid analysis technique to quantify embodied energy. Results show that the embodied energy is much more significant than previously thought. Also, compared to a standard house with the same geometry, structure, finishes and number of people, a passive house can use more energy over 80 years, mainly due to the additional materials required. Current building energy efficiency certifications should widen their system boundaries to include embodied energy in order to reduce the life cycle energy demand of residential buildings.
Keywords: Embodied energy, Hybrid analysis, Life cycle energy analysis, Passive house.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29033322 Neural Network Controller for Mobile Robot Motion Control
Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic
Abstract:
In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33333321 Energy Consumption Forecast Procedure for an Industrial Facility
Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova
Abstract:
We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas, the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself, implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.Keywords: Energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17203320 Assessment of Energy Use and Energy Efficiency in Two Portuguese Slaughterhouses
Authors: M. Feliciano, F. Rodrigues, A. Gonçalves, J. M. R. C. A. Santos, V. Leite
Abstract:
With the objective of characterizing the profile and performance of energy use by slaughterhouses, surveys and audits were performed in two different facilities located in the northeastern region of Portugal. Energy consumption from multiple energy sources was assessed monthly, along with production and costs, for the same reference year. Gathered data was analyzed to identify and quantify the main consuming processes and to estimate energy efficiency indicators for benchmarking purposes. Main results show differences between the two slaughterhouses concerning energy sources, consumption by source and sector, and global energy efficiency. Electricity is the most used source in both slaughterhouses with a contribution of around 50%, being essentially used for meat processing and refrigeration. Natural gas, in slaughterhouse A, and pellets, in slaughterhouse B, used for heating water take the second place, with a mean contribution of about 45%. On average, a 62 kgoe/t specific energy consumption (SEC) was found, although with differences between slaughterhouses. A prominent negative correlation between SEC and carcass production was found specially in slaughterhouse A. Estimated Specific Energy Cost and Greenhouse Gases Intensity (GHGI) show mean values of about 50 €/t and 1.8 tCO2e/toe, respectively. Main results show that there is a significant margin for improving energy efficiency and therefore lowering costs in this type of non-energy intensive industries.
Keywords: Meat industry, energy intensity, energy efficiency, GHG emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37343319 Study of Energy Efficiency Opportunities in UTHM
Authors: Zamri Noranai, Mohammad Zainal Md Yusof
Abstract:
Sustainable energy usage has been recognized as one of the important measure to increase the competitiveness of the nation globally. Many strong emphases were given in the Ninth Malaysia Plan (RMK9) to improve energy efficient especially to government buildings. With this in view, a project to investigate the potential of energy saving in selected building in Universiti Tun Hussein Onn Malaysia (UTHM) was carried out. In this project, a case study involving electric energy consumption of the academic staff office building was conducted. The scope of the study include to identify energy consumption in a selected building, to study energy saving opportunities, to analyse cost investment in term of economic and to identify users attitude with respect to energy usage. The MS1525:2001, Malaysian Standard -Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. Several energy efficient measures were considered and their merits and priority were compared. Improving human behavior can reduce energy consumption by 6% while technical measure can reduce energy consumption by 44%. Two economic analysis evaluation methods were applied; they are the payback period method and net present value method.Keywords: office building, energy, efficiency, economic analyses
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25593318 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature
Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang
Abstract:
Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.
Keywords: Energy Storage System, Heat Pump.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18513317 Summing ANFIS PID Control of Passenger Seat Vibrations in Active Quarter Car Model
Authors: Devdutt
Abstract:
In this paper, passenger seat vibration control of an active quarter car model under random road excitations is considered. The designed ANFIS and Summing ANFIS PID controllers are assembled in primary suspension system of quarter car model. Simulation work is performed in time and frequency domain to obtain passenger seat acceleration and displacement responses. Simulation results show that Summing ANFIS PID based controller is highly suitable to suppress the road induced vibrations in quarter car model to achieve desired passenger ride comfort and safety compared to ANFIS and passive system.
Keywords: Quarter car model, Active suspension system, Summing ANFIS PID controller, Passenger ride comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8763316 Robust Control Synthesis for an Unmanned Underwater Vehicle
Authors: A. Budiyono
Abstract:
The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.
Keywords: coefficient diagram method, robust control, Kharitonov polynomials, unmanned underwater vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20883315 Solar Energy for Water Conditioning
Authors: J. Pawłat, H. Stryczewska
Abstract:
Shortening of natural resources will impose greater limitations of electric energy consumption in various fields including water treatment technologies. Small water treatment installations supplied with electric energy from solar sources are perfect example of zero-emission technology. Possibility of solar energy application, as one of the alternative energy resources for decontamination processes is strongly dependent on geographical location. Various examples of solar driven water purification systems are given and design of solar-water treatment installation based on ozone for the geographical conditions in Poland are presented.Keywords: solar energy, water purification, ozone water treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17923314 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15913313 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10603312 LQR and SMC Stabilization of a New Unmanned Aerial Vehicle
Authors: Kaan T. Oner, Ertugrul Cetinsoy, Efe Sirimoglu, Cevdet Hancer, Taylan Ayken, Mustafa Unel
Abstract:
We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the vehicle and control of its altitude have been designed and implemented via simulations. In particular, an LQR controller has been shown to be quite effective in the vertical flight mode for all possible yaw angles. A sliding mode controller (SMC) with recursive nature has also been proposed to stabilize the vehicle-s attitude and altitude. Simulation results show that proposed controllers provide satisfactory performance in achieving desired maneuvers.Keywords: UAV, VTOL, dynamic model, stabilization, LQR, SMC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21093311 Characterization of an Extrapolation Chamber for Dosimetry of Low Energy X-Ray Beams
Authors: Fernanda M. Bastos, Teógenes A. da Silva
Abstract:
Extrapolation chambers were designed to be used as primary standard dosimeter for measuring absorbed dose in a medium in beta radiation and low energy x-rays. The International Organization for Standardization established series of reference x-radiation for calibrating and determining the energy dependence of dosimeters that are to be reproduced in metrology laboratories. Standardization of the low energy x-ray beams with tube potential lower than 30 kV may be affected by the instrument used for dosimetry. In this work, parameters of a 23392 model PTW extrapolation chamber were determined aiming its use in low energy x-ray beams as a reference instrument.Keywords: Extrapolation chamber, low energy x-rays, standardization, x-ray dosimetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14603310 A Note on Significance of Solar Pond Technology for Power Generation
Authors: Donepudi Jagadish
Abstract:
In the view of current requirements of power generation and the increased interest on renewable energy sources, many options are available for generation of clean power. Solar power generation would be one of the best options in this context. The solar pond uses the principle of conversion of solar energy into heat energy, and also has the capability of storing this energy for certain period of time. The solar ponds could be best option for the regions with high solar radiation throughout the day, and also has free land availability. The paper depicts the significance of solar pond for conversion of solar energy into heat energy with a sight towards the parameters like thermal efficiency, working conditions and cost of construction. The simulation of solar pond system has been carried out for understanding the trends of the thermal efficiencies with respect to time.
Keywords: Renewable Energy, Solar Pond, Energy Efficiency, Construction of Solar Pond.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33283309 The Relationship between Value-Added and Energy Consumption in Iran’s Industry Sector
Authors: Morteza Raei Dehaghi, Mojtaba Molaahmadi, Seyed Mohammad Mirhashemi
Abstract:
This study aimed to explore the relationship between energy consumption and value-added in Iran’s industry sector during the time period 1973-2011. Annual data related to energy consumption and value added in the industry sector were used. The results of the study revealed a positive relationship between energy consumption and value-added of the industry sector. Similarly, the results showed that there is one-way causality between energy consumption and value-added in the industry sector.Keywords: Energy consumption, economic growth, industry sector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23943308 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.
Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26763307 Perspective and Challenge of Tidal Power in Bangladesh
Authors: Md. Alamgir Hossain, Md. Zakir Hossain, Md. Atiqur Rahman
Abstract:
Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed.
Keywords: Sustainable energy, tidal power, cost analysis, power demand, gas crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35433306 Fuzzy Error Recovery in Feedback Control for Three Wheel Omnidirectional Soccer Robot
Authors: Vahid Rostami, Omid sojodishijani , Saeed Ebrahimijam, Ali MohsenizanjaniNejad
Abstract:
This paper is described one of the intelligent control method in Autonomous systems, which is called fuzzy control to correct the three wheel omnidirectional robot movement while it make mistake to catch the target. Fuzzy logic is especially advantageous for problems that can not be easily represented by mathematical modeling because data is either unavailable, incomplete or the process is too complex. Such systems can be easily up grated by adding new rules to improve performance or add new features. In many cases , fuzzy control can be used to improve existing traditional controller systems by adding an extra layer of intelligence to the current control method. The fuzzy controller designed here is more accurate and flexible than the traditional controllers. The project is done at MRL middle size soccer robot team.
Keywords: Robocup , omnidirectional , fuzzy control, soccer robot , intelligent control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19463305 A Novel, Cost-effective Design to Harness Ocean Energy in the Developing Countries
Authors: S. Ayub, S.N. Danish, S.R. Qureshi
Abstract:
The world's population continues to grow at a quarter of a million people per day, increasing the consumption of energy. This has made the world to face the problem of energy crisis now days. In response to the energy crisis, the principles of renewable energy gained popularity. There are much advancement made in developing the wind and solar energy farms across the world. These energy farms are not enough to meet the energy requirement of world. This has attracted investors to procure new sources of energy to be substituted. Among these sources, extraction of energy from the waves is considered as best option. The world oceans contain enough energy to meet the requirement of world. Significant advancements in design and technology are being made to make waves as a continuous source of energy. One major hurdle in launching wave energy devices in a developing country like Pakistan is the initial cost. A simple, reliable and cost effective wave energy converter (WEC) is required to meet the nation-s energy need. This paper will present a novel design proposed by team SAS for harnessing wave energy. This paper has three major sections. The first section will give a brief and concise view of ocean wave creation, propagation and the energy carried by them. The second section will explain the designing of SAS-2. A gear chain mechanism is used for transferring the energy from the buoy to a rotary generator. The third section will explain the manufacturing of scaled down model for SAS-2 .Many modifications are made in the trouble shooting stage. The design of SAS-2 is simple and very less maintenance is required. SAS-2 is producing electricity at Clifton. The initial cost of SAS-2 is very low. This has proved SAS- 2 as one of the cost effective and reliable source of harnessing wave energy for developing countries.
Keywords: Clean Energy, Wave energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18463304 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8153303 Flexible Arm Manipulator Control for Industrial Tasks
Authors: Mircea Ivanescu, Nirvana Popescu, Decebal Popescu, Dorin Popescu
Abstract:
This paper addresses the control problem of a class of hyper-redundant arms. In order to avoid discrepancy between the mathematical model and the actual dynamics, the dynamic model with uncertain parameters of this class of manipulators is inferred. A procedure to design a feedback controller which stabilizes the uncertain system has been proposed. A PD boundary control algorithm is used in order to control the desired position of the manipulator. This controller is easy to implement from the point of view of measuring techniques and actuation. Numerical simulations verify the effectiveness of the presented methods. In order to verify the suitability of the control algorithm, a platform with a 3D flexible manipulator has been employed for testing. Experimental tests on this platform illustrate the applications of the techniques developed in the paper.
Keywords: Distributed model, flexible manipulator, observer, robot control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16953302 Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor
Authors: S. Massoum, A. Bentaallah, A. Massoum, F. Benaimeche, P. Wira, A. Meroufel
Abstract:
This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.Keywords: IM, FOC, FLC, SMC, and FSMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28153301 A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping
Authors: S.F. Faisal, A.H.M.A. Rahim, J.M. Bakhashwain
Abstract:
Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions.
Keywords: STATCOM, Robust control, Power system damping, Particle Swarm Optimization, Loop-shaping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18813300 Assessment of the Benefits of Renewable Energy to the Azerbaijan Ecosystem
Authors: N. S. Imamverdiyev
Abstract:
The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. These technologies also highlight the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographic assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Potential solutions such as the use of ecological benefit measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder participation in decision-making processes are being investigated to determine the positive effects of renewable energy infrastructure on ecosystem services.
Keywords: Renewable energy, solar energy, climate change, energy production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983299 Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools
Authors: Chin-Yin Chen, Chi-Cheng Cheng
Abstract:
This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.
Keywords: Machine tools, integrated structure and control design, design for control, multilevel decomposition, quantitative feedback theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19483298 Energy Loss at Drops using Neuro Solutions
Authors: Farzin Salmasi
Abstract:
Energy dissipation in drops has been investigated by physical models. After determination of effective parameters on the phenomenon, three drops with different heights have been constructed from Plexiglas. They have been installed in two existing flumes in the hydraulic laboratory. Several runs of physical models have been undertaken to measured required parameters for determination of the energy dissipation. Results showed that the energy dissipation in drops depend on the drop height and discharge. Predicted relative energy dissipations varied from 10.0% to 94.3%. This work has also indicated that the energy loss at drop is mainly due to the mixing of the jet with the pool behind the jet that causes air bubble entrainment in the flow. Statistical model has been developed to predict the energy dissipation in vertical drops denotes nonlinear correlation between effective parameters. Further an artificial neural networks (ANNs) approach was used in this paper to develop an explicit procedure for calculating energy loss at drops using NeuroSolutions. Trained network was able to predict the response with R2 and RMSE 0.977 and 0.0085 respectively. The performance of ANN was found effective when compared to regression equations in predicting the energy loss.Keywords: Air bubble, drop, energy loss, hydraulic jump, NeuroSolutions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644