Search results for: Temporary work engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5196

Search results for: Temporary work engineering

96 On the Parameter Optimization of Fuzzy Inference Systems

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
95 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques

Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson

Abstract:

Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).

Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
94 Bridge Analysis Structure under Human Induced Dynamic Load

Authors: O. Kratochvíl, J. Križan

Abstract:

The paper deals with the analysis of the dynamic response of footbridges under human - induced dynamic loads. This is a frequently occurring and often dominant load for footbridges as it stems from the very purpose of a footbridge - to convey pedestrian. Due to the emergence of new materials and advanced engineering technology, slender footbridges are increasingly becoming popular to satisfy the modern transportation needs and the aesthetical requirements of the society. These structures however are always lively with low stiffness, low mass, low damping and low natural frequencies. As a consequence, they are prone to vibration induced by human activities and can suffer severe vibration serviceability problems, particularly in the lateral direction. Pedestrian bridges are designed according to first and second limit states, these are the criteria involved in response to static design load. However, it is necessary to assess the dynamic response of bridge design load on pedestrians and assess it impact on the comfort of the user movement. Usually the load is considered a person or a small group which can be assumed in perfect motion synchronization. Already one person or small group can excite significant vibration of the deck. In order to calculate the dynamic response to the movement of people, designer needs available and suitable computational model and criteria. For the calculation program ANSYS based on finite element method was used.

Keywords: Footbridge, dynamic analysis, vibration serviceability of footbridges, lateral vibration, stiffness, dynamic force, walking force, slender suspension footbridges, natural frequencies and vibration modes, rhythm jumping, normal walking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
93 Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test

Authors: A. Khodabakhshi, A. Mortazavi

Abstract:

Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results.

Keywords: Deformation modulus, numerical model, plate loading test, rock mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
92 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema

Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy

Abstract:

Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.

Keywords: Natural language processing, end user development; natural language interfaces, human computer interaction, data recognition, dialog systems, spreadsheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
91 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil

Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami

Abstract:

—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Keywords: Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
90 An Analysis of Collapse Mechanism of Thin- Walled Circular Tubes Subjected to Bending

Authors: Somya Poonaya, Chawalit Thinvongpituk, Umphisak Teeboonma

Abstract:

Circular tubes have been widely used as structural members in engineering application. Therefore, its collapse behavior has been studied for many decades, focusing on its energy absorption characteristics. In order to predict the collapse behavior of members, one could rely on the use of finite element codes or experiments. These tools are helpful and high accuracy but costly and require extensive running time. Therefore, an approximating model of tubes collapse mechanism is an alternative for early step of design. This paper is also aimed to develop a closed-form solution of thin-walled circular tube subjected to bending. It has extended the Elchalakani et al.-s model (Int. J. Mech. Sci.2002; 44:1117-1143) to include the rate of energy dissipation of rolling hinge in the circumferential direction. The 3-D geometrical collapse mechanism was analyzed by adding the oblique hinge lines along the longitudinal tube within the length of plastically deforming zone. The model was based on the principal of energy rate conservation. Therefore, the rates of internal energy dissipation were calculated for each hinge lines which are defined in term of velocity field. Inextensional deformation and perfect plastic material behavior was assumed in the derivation of deformation energy rate. The analytical result was compared with experimental result. The experiment was conducted with a number of tubes having various D/t ratios. Good agreement between analytical and experiment was achieved.

Keywords: Bending, Circular tube, Energy, Mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3501
89 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
88 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: Area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
87 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts

Authors: Wei Sun, Yan Dong

Abstract:

There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.

Keywords: Robotics, computational thinking, programming, young children, flowcharts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
86 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
85 The Impact of Cooperative Learning on Numerical Methods Course

Authors: Sara Bilal, Abdi Omar Shuriye, Raihan Othman

Abstract:

Numerical Methods is a course that can be conducted using workshops and group discussion. This study has been implemented on undergraduate students of level two at the Faculty of Engineering, International Islamic University Malaysia. The Numerical Method course has been delivered to two Sections 1 and 2 with 44 and 22 students in each section, respectively. Systematic steps have been followed to apply the student centered learning approach in teaching Numerical Method course. Initially, the instructor has chosen the topic which was Euler’s Method to solve Ordinary Differential Equations (ODE) to be learned. The students were then divided into groups with five members in each group. Initial instructions have been given to the group members to prepare their subtopics before meeting members from other groups to discuss the subtopics in an expert group inside the classroom. For the time assigned for the classroom discussion, the setting of the classroom was rearranged to accommodate the student centered learning approach. Teacher strength was by monitoring the process of learning inside and outside the class. The students have been assessed during the migrating to the expert groups, recording of a video explanation outside the classroom and during the final examination. Euler’s Method to solve the ODE was set as part of Question 3(b) in the final exam. It is observed that none of the students from both sections obtained a zero grade in Q3(b), compared to Q3(a) and Q3(c). Also, for Section 1(44 students), 29 students obtained the full mark of 7/7, while only 10 obtained 7/7 for Q3(a) and no students obtained 6/6 for Q3(c). Finally, we can recommend that the Numerical Method course be moved toward more student-centered Learning classrooms where the students will be engaged in group discussion rather than having a teacher one man show.

Keywords: Teacher centered learning, student centered learning, mathematic, numerical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
84 Strategies for Developing e-LMS for Tanzania Secondary Schools

Authors: Ellen A. Kalinga, R. B. Bagile Burchard, Lena Trojer

Abstract:

Tanzania secondary schools in rural areas are geographically and socially isolated, hence face a number of problems in getting learning materials resulting in poor performance in National examinations. E-learning as defined to be the use of information and communication technology (ICT) for supporting the educational processes has motivated Tanzania to apply ICT in its education system. There has been effort to improve secondary school education using ICT through several projects. ICT for e-learning to Tanzania rural secondary school is one of the research projects conceived by the University of Dar-es-Salaam through its College of Engineering and Technology. The main objective of the project is to develop a tool to enable ICT support rural secondary school. The project is comprehensive with a number of components, one being development of e-learning management system (e-LMS) for Tanzania secondary schools. This paper presents strategies of developing e-LMS. It shows the importance of integrating action research methodology with the modeling methods as presented by model driven architecture (MDA) and the usefulness of Unified Modeling Language (UML) on the issue of modeling. The benefit of MDA will go along with the development based on software development life cycle (SDLC) process, from analysis and requirement phase through design and implementation stages as employed by object oriented system analysis and design approach. The paper also explains the employment of open source code reuse from open source learning platforms for the context sensitive development of the e-LMS for Tanzania secondary schools.

Keywords: Action Research Methodology, OOSA&D, MDA, UML, Open Source LMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
83 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes

Authors: Ritwik Dutta, Marilyn Wolf

Abstract:

This paper describes the tradeoffs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The backend consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.

Keywords: Flask, Java, JavaScript, health monitoring, long term care, Mongo, Python, smart home, software engineering, webserver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
82 Drivers of Customer Satisfaction in an Industrial Company from Marketing Aspect

Authors: M. Arefi, A.M. Amini, K. Fallahi

Abstract:

One of the basic concepts in marketing is the concept of meeting customers- needs. Since customer satisfaction is essential for lasting survival and development of a business, screening and observing customer satisfaction and recognizing its underlying factors must be one of the key activities of every business. The purpose of this study is to recognize the drivers that effect customer satisfaction in a business-to-business situation in order to improve marketing activities. We conducted a survey in which 93 business customers of a manufacturer of Diesel Generator in Iran participated and they talked about their ideas and satisfaction of supplier-s services related to its products. We developed the measures for drivers of satisfaction first by as investigative research (by means of feedback from executives and customers of sponsoring firm). Then based on these measures, we created a mail survey, and asked the respondents to explain their opinion about the sponsoring firm which was a supplier of diesel generator and similar products. Furthermore, the survey required the participants to mention their functional areas and their company features. In Conclusion we found that there are three drivers for customer satisfaction, which are reliability, information about product, and commercial features. Buyers/users from different functional areas attribute different degree of importance to the last two drivers. For instance, people from buying and management areas believe that commercial features are more important than information about products. But people in engineering, maintenance and production areas believe that having information about products is more important than commercial aspects. Marketing experts should consider the attribute of customers regarding information about the product and commercial features to improve market share.

Keywords: B2B, Customer satisfaction, Commercial, Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
81 Cost Valuation Method for Development Concurrent Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert

Abstract:

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a nonnegligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Keywords: Research and development, technology and Innovation, lithium-ion-battery production, load carrier development process, cost valuation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
80 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall

Authors: Zhao Cai-qi, Ma Jun

Abstract:

Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimsate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that: (1) the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete, (2) both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of an 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.

Keywords: Twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
79 Experimental Measurements of the Mean Flow Field in Wide-Angled Diffusers: A Data Bank Contribution

Authors: Karanja Kibicho, Anthony Sayers

Abstract:

Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Stalled diffusers render the whole fluid flow system, in which they are part of, very inefficient. There is then an engineering need to try to understand the whole process of diffuser stall if any meaningful attempts to improve on diffuser efficiency are to be made. In this regard, this paper provides a data bank contribution for the mean flow-field in wide-angled diffusers where the complete velocity and static pressure fields, and pressure recovery data for diffusers in the fully stalled flow regime are experimentally measured. The measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centreline velocity for diffusers whose divergence angles were between 30Ôùª and 50Ôùª. Variation of Reynolds number did not significantly affect the velocity and static pressure profiles. The wall static pressure recovery was found to be more sensitive to changes in the Reynolds number. By increasing the velocity from 10 m/s to 20 m/s, the wall static pressure recovery increased by 8.31%. However, as the divergence angle was increased, a similar increase in the Reynolds number resulted in a higher percentage increase in pressure recovery. Experimental results showed that regardless of the wall to which the flow was attached, both the velocity and pressure fields were replicated with discrepancies below 2%.

Keywords: Two-dimensional, wide-angled, diffuser, stall, separated flows, subsonic flows, diffuser flow regimes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
78 An Embedded System for Artificial Intelligence Applications

Authors: Ioannis P. Panagopoulos, Christos C. Pavlatos, George K. Papakonstantinou

Abstract:

Conventional approaches in the implementation of logic programming applications on embedded systems are solely of software nature. As a consequence, a compiler is needed that transforms the initial declarative logic program to its equivalent procedural one, to be programmed to the microprocessor. This approach increases the complexity of the final implementation and reduces the overall system's performance. On the contrary, presenting hardware implementations which are only capable of supporting logic programs prevents their use in applications where logic programs need to be intertwined with traditional procedural ones, for a specific application. We exploit HW/SW codesign methods to present a microprocessor, capable of supporting hybrid applications using both programming approaches. We take advantage of the close relationship between attribute grammar (AG) evaluation and knowledge engineering methods to present a programmable hardware parser that performs logic derivations and combine it with an extension of a conventional RISC microprocessor that performs the unification process to report the success or failure of those derivations. The extended RISC microprocessor is still capable of executing conventional procedural programs, thus hybrid applications can be implemented. The presented implementation is programmable, supports the execution of hybrid applications, increases the performance of logic derivations (experimental analysis yields an approximate 1000% increase in performance) and reduces the complexity of the final implemented code. The proposed hardware design is supported by a proposed extended C-language called C-AG.

Keywords: Attribute Grammars, Logic Programming, RISC microprocessor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5080
77 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: Finite element analysis, seismic performance evaluation, separated composite structural system, static pushover analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
76 A Specification-Based Approach for Retrieval of Reusable Business Component for Software Reuse

Authors: Meng Fanchao, Zhan Dechen, Xu Xiaofei

Abstract:

Software reuse can be considered as the most realistic and promising way to improve software engineering productivity and quality. Automated assistance for software reuse involves the representation, classification, retrieval and adaptation of components. The representation and retrieval of components are important to software reuse in Component-Based on Software Development (CBSD). However, current industrial component models mainly focus on the implement techniques and ignore the semantic information about component, so it is difficult to retrieve the components that satisfy user-s requirements. This paper presents a method of business component retrieval based on specification matching to solve the software reuse of enterprise information system. First, a business component model oriented reuse is proposed. In our model, the business data type is represented as sign data type based on XML, which can express the variable business data type that can describe the variety of business operations. Based on this model, we propose specification match relationships in two levels: business operation level and business component level. In business operation level, we use input business data types, output business data types and the taxonomy of business operations evaluate the similarity between business operations. In the business component level, we propose five specification matches between business components. To retrieval reusable business components, we propose the measure of similarity degrees to calculate the similarities between business components. Finally, a business component retrieval command like SQL is proposed to help user to retrieve approximate business components from component repository.

Keywords: Business component, business operation, business data type, specification matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
75 Geosynthetic Reinforced Unpaved Road: Literature Study and Design Example

Authors: D. Jayalakshmi, S. Bhosale

Abstract:

This paper, in its first part, presents the state-of-the-art literature of design approaches for geosynthetic reinforced unpaved roads. The literature starting since 1970 and the critical appraisal of flexible pavement design by Giroud and Han (2004) and Jonathan Fannin (2006) is presented. The design example is illustrated for Indian conditions. The example emphasizes the results computed by Giroud and Han's (2004) design method with the Indian road congress guidelines by IRC SP 72 -2015. The input data considered are related to the subgrade soil condition of Maharashtra State in India. The unified soil classification of the subgrade soil is inorganic clay with high plasticity (CH), which is expansive with a California bearing ratio (CBR) of 2% to 3%. The example exhibits the unreinforced case and geotextile as reinforcement by varying the rut depth from 25 mm to 100 mm. The present result reveals the base thickness for the unreinforced case from the IRC design catalogs is in good agreement with Giroud and Han (2004) approach for a range of 75 mm to 100 mm rut depth. Since Giroud and Han (2004) method is applicable for both reinforced and unreinforced cases, for the same data with appropriate Nc factor, for the same rut depth, the base thickness for the reinforced case has arrived for the Indian condition. From this trial, for the CBR of 2%, the base thickness reduction due to geotextile inclusion is 35%. For the CBR range of 2% to 5% with different stiffness in geosynthetics, the reduction in base course thickness will be evaluated, and the validation will be executed by the full-scale accelerated pavement testing set up at the College of Engineering Pune (COE), India.

Keywords: Base thickness, design approach, equation, full scale accelerated pavement set up, Indian condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
74 Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass

Authors: Mehrnaz Aminitabar, Moghan Amirhosseinian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: Antibacterial activity, bioactive glass, sol-gel, strontium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
73 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

Sustainability and eco-friendly requirement of engineering materials are sort for in recent times, thus giving rise to the development of bio-composites. However, the natural fibres to matrix interface interactions remain a key issue in getting the desired mechanical properties from such composites. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed Luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8% and 10% wt. sodium hydroxide (NaOH) concentrations for a period of 24 hours under room temperature conditions. A formulation ratio of 80/20 g (matrix to reinforcement) was maintained for all developed samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had a maximum tensile and flexural strength of 7.65 MPa and 17.08 Mpa respectively corresponding to a young modulus and flexural modulus of 21.08 MPa and 232.22 MPa for the 8% and 4% wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improved the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: Flexural strength, LC fibres, LC/rLDPE composite, Tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
72 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: Soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659
71 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: Analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
70 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes

Abstract:

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Keywords: Composites materials, laminated composite plate, shear deformation theory of plates, finite element analysis, free vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
69 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: Base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
68 Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties

Authors: Noor Zainab Habib, Ibrahim Kamaruddin, Madzalan Napiah, Isa Mohd Tan

Abstract:

This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely control mix, wet mix and dry mix were prepared. Optimum binder content was calculated considering Marshall Stability, flow, air voids and Marshall Quotient at different bitumen content varying from 4% - 6.5% for control, dry and wet mix. Engineering properties thus obtained at the calculated optimum bitumen content revealed that wet mixing process is advantageous in comparison to dry mixing as it increases the stiffness of the mixture with the increase in polymer content in bitumen. Stiffness value for wet mix increases with the increase in polymer content which is beneficial in terms of rutting. 1% PP dry mix also shows enhanced stiffness, with the air void content limited to 4%.The flow behaviour of dry mix doesn't indicate any major difference with the increase in polymer content revealing that polymer acting as an aggregate only without affecting the viscosity of the binder in the mix. Polypropylene (PP) when interacted with 80 pen base bitumen enhances its performance characteristics which were brought about by altered rheological properties of the modified bitumen. The decrease in flow with the increase in binder content reflects the increase in viscosity of binder which induces the plastic flow in the mix. Workability index indicates that wet mix were easy to compact up to desired void ratio in comparison to dry mix samples.

Keywords: Marshall Flow, Marshall Stability, Polymer modified bitumen, Polypropylene, Stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4480
67 Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.

Keywords: Mass transfer, multiple plunging jets, polynomial and radial basis kernel functions, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426