Search results for: plastic strain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 791

Search results for: plastic strain

311 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion

Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent

Abstract:

The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.

Keywords: Landslide, second order work, precipitation, inclinometers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
310 Ultimate Shear Resistance of Plate Girders Part 2- Höglund Theory

Authors: Ahmed S. Elamary

Abstract:

Ultimate shear resistance (USR) of slender plate girders can be predicted theoretically using Cardiff theory or Höglund theory. This paper will be concerned with predicting the USR using Höglund theory and EC3. Two main factors can affect the USR, the panel width “b” and the web depth “d”, consequently, the panel aspect ratio (b/d) has to be identified by limits. In most of the previous study, there is no limit for panel aspect ratio indicated. In this paper theoretical analysis has been conducted to study the effect of (b/d) on the USR. The analysis based on ninety six test results of steel plate girders subjected to shear executed and collected by others. New formula proposed to predict the percentage of the distance between the plastic hinges form in the flanges “c” to panel width “b”. Conservative limits of (c/b) have been suggested to get a consistent value of USR.

Keywords: Ultimate shear resistance, Plate Girder, Höglund’s theory, EC3.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4959
309 Precipitation Hardening Behavior of Directly Cold Rolled Al-6Mg Alloy Containing Ternary Sc and Quaternary Zi/Ti

Authors: M. S. Kaiser

Abstract:

Ageing of 75% cold rolled Al-6Mg alloy with ternary 0.4 wt% scandium and quaternary zirconium and titanium has been carried out. Alloy samples are naturally, isochronally and isothermally aged for different time and temperatures. Hardness values of the differently processed alloys have been measured to understand the ageing behavior of Al-6Mg alloy with scandium and quaternary zirconium and titanium addition. Resistivity changes with annealing time and temperature were measured to understand the precipitation behavior and recovery of strain of the alloy. Attempts were also made to understand the grain refining effect of scandium in Al-6Mg alloy. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides and the dendrites of the Al-6Mg alloy have been refined significantly due to addition of scandium.

Keywords: Al-Mg alloys, age hardening, resistivity, metastable phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
308 Thermo Mechanical Design and Analysis of PEM Fuel cell Plate

Authors: Saravana Kannan Thangavelu

Abstract:

Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.

Keywords: Design optimization, FEA, PEM fuel cell, Thermal stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
307 Assessing the Seismic Performance of Threaded Rebar Coupler System

Authors: Do-Kyu, Hwang, Ho-Young Kim, Ho-Hyeoung Choi, Gi-Beom Park, Jae-Hoon Lee

Abstract:

Currently there are many use of threaded reinforcing bars in construction fields because those do not need additional screw processing when connecting reinforcing bar by threaded coupler. In this study, reinforced concrete bridge piers using threaded rebar coupler system at the plastic hinge area were tested to evaluate seismic performance. The test results showed that threads of the threaded rebar coupler system could be loosened while under tension-compression cyclic loading because tolerance and rib face angle of a threaded rebar coupler system are greater than that of a conventional ribbed rebar coupler system. As a result, cracks were concentrated just outside of the mechanical coupler and stiffness of reinforced concrete bridge pier decreased. Therefore, it is recommended that connection ratio of mechanical couplers in one section shall be below 50% in order that cracks are not concentrated just outside of the mechanical coupler. Also, reduced stiffness of the specimen should be considered when using the threaded rebar coupler system.

Keywords: Reinforced concrete column, seismic performance, threaded rebar coupler, threaded reinforcing bar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3696
306 Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment

Authors: Nguyen Thi Thanh Truc, Chi-Hyeon Lee, Byeong-Kyu Lee, Srinivasa Reddy Mallampati

Abstract:

This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics.

Keywords: ABS, hydrophilic, heat treatment, froth flotation, contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
305 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.

Keywords: Adomian, Decomposition Method, Generalized Thermoelasticity, algorithm, empirical parameter, lattice design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
304 Effect of Including Thermal Process on Spot Welded and Weld-Bonded Joints

Authors: Essam A. Al-Bahkali

Abstract:

A three-dimensional finite element modeling for austenitic stainless steel AISI 304 annealed condition sheets of 1.0 mm thickness are developed using ABAQUS® software. This includes spot welded and weld bonded joints models. Both models undergo thermal heat caused by spot welding process and then are subjected to axial load up to the failure point. The properties of elastic and plastic regions, modulus of elasticity, fracture limit, nugget and heat affected zones are determined. Complete loaddisplacement curve for each joining model is obtained and compared with the experiment data and with the finite element models without including the effect of thermal process. In general, the results obtained for both spot welded and weld-bonded joints affected by thermal process showed an excellent agreement with the experimental data.

Keywords: Heat Affected Zone, Spot Welded, Thermal Process, Weld-Bonded.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
303 Effect of the Rise/Span Ratio of a Spherical Cap Shell on the Buckling Load

Authors: Peter N. Khakina, Mohammed I. Ali, Enchun Zhu, Huazhang Zhou, Baydaa H. Moula

Abstract:

Rise/span ratio has been mentioned as one of the reasons which contribute to the lower buckling load as compared to the Classical theory buckling load but this ratio has not been quantified in the equation. The purpose of this study was to determine a more realistic buckling load by quantifying the effect of the rise/span ratio because experiments have shown that the Classical theory overestimates the load. The buckling load equation was derived based on the theorem of work done and strain energy. Thereafter, finite element modeling and simulation using ABAQUS was done to determine the variables that determine the constant in the derived equation. The rise/span was found to be the determining factor of the constant in the buckling load equation. The derived buckling load correlates closely to the load obtained from experiments.

Keywords: Buckling, Finite element, Rise/span ratio, Sphericalcap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
302 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method

Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, N. Tugrul, S. Piskin

Abstract:

Zinc borate is an important inorganic hydrate borate material, which can be used as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame retardant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2·(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2·(OH)6 : H3BO3). After the zinc borate synthesis, the products were analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 is determined for the synthesis of zinc borates with ultrasonic method.

Keywords: Borate, ultrasonic method, zinc borate, zinc borate synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
301 Improvement of Performance for R.C. Beams Made from Recycled Aggregate by Using Non-Traditional Admixture

Authors: A. H. Yehia, M. M. Rashwan, K. A. Assaf, K. Abd el Samee

Abstract:

The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios.

Keywords: Deflection, modulus of elasticity, non-traditional admixture, recycled concrete aggregate, strain, toughness, under and over reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
300 Analytical Modelling of Average Bond Stress within the Anchorage of Tensile Reinforcing Bars in Reinforced Concrete Members

Authors: Maruful H. Mazumder, Raymond I. Gilbert, Zhen- T. Chang

Abstract:

A reliable estimate of the average bond stress within the anchorage of steel reinforcing bars in tension is critically important for the design of reinforced concrete member. This paper describes part of a recently completed experimental research program in the Centre for Infrastructure Engineering and Safety (CIES) at the University of New South Wales, Sydney, Australia aimed at assessing the effects of different factors on the anchorage requirements of modern high strength steel reinforcing bars. The study found that an increase in the anchorage length and bar diameter generally leads to a reduction of the average ultimate bond stress. By the extension of a well established analytical model of bond and anchorage, it is shown here that the differences in the average ultimate bond stress for different anchorage lengths is associated with the variable degree of plastic deformation in the tensile zone of the concrete surrounding the bar.

Keywords: Anchorage, Bond stress, Development length, Reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
299 Sustainable Solutions for Municipal Solid Waste Management in Thailand

Authors: Thaniya Kaosol

Abstract:

General as well as the MSW management in Thailand is reviewed in this paper. Topics include the MSW generation, sources, composition, and trends. The review, then, moves to sustainable solutions for MSW management, sustainable alternative approaches with an emphasis on an integrated MSW management. Information of waste in Thailand is also given at the beginning of this paper for better understanding of later contents. It is clear that no one single method of MSW disposal can deal with all materials in an environmentally sustainable way. As such, a suitable approach in MSW management should be an integrated approach that could deliver both environmental and economic sustainability. With increasing environmental concerns, the integrated MSW management system has a potential to maximize the useable waste materials as well as produce energy as a by-product. In Thailand, the compositions of waste (86%) are mainly organic waste, paper, plastic, glass, and metal. As a result, the waste in Thailand is suitable for an integrated MSW management. Currently, the Thai national waste management policy starts to encourage the local administrations to gather into clusters to establish central MSW disposal facilities with suitable technologies and reducing the disposal cost based on the amount of MSW generated.

Keywords: MSW, management, sustainable, Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5774
298 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: Welded steel plate, crack variation, three-dimensional Digital Image Correlation (DIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
297 Improvement of Monacolin K and Minimizing of Citrinin Content in Korkor 6 (RD 6) Red Yeast Rice

Authors: Em-on Chairote, Panatda Jannoey, Griangsak Chairote

Abstract:

A strain of Monascus purpureus CMU001 was used to prepare red yeast rice from Thai glutinous rice Korkor 6 (RD 6). Adding of different amounts of histidine (156, 312, 625 and 1250 mg in 100 g of rice grains)) under aerobic and air limitation (air-lock) condition were used in solid fermentation. Determination of the yield as well as monacolin K content was done. Citrinin content was also determined in order to confirm the safety use of prepared red yeast rice. It was found that under air-lock condition with 1250 mg of histidine addition gave the highest yield of 37.40 g of dried red yeast rice prepared from 100 g of rice. Highest 5.72 mg content of monacolin K was obtained under air-lock condition with 312 mg histidine addition. In the other hand, citrinin content was found to be less than 24462 ng/g of all dried red yeast rice samples under the experimental methods used in this work.

Keywords: Citrinin, Glutinous rice, Monacolin K, Red yeast rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500
296 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.

Keywords: Finite element analysis, soil-blade contact modeling, blade force, experimental results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
295 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: Atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
294 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method

Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan

Abstract:

Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.

Keywords: Hot forging, engine valve, fracture, tooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831
293 Grooving Method to Postpone Debonding of FRP Sheets Used for Shear Strengthening

Authors: Davood Mostofinejad, Seyed Amirali Mostafavizadeh, Amirhomayoon Tabatabaei Kashani

Abstract:

One of the most common practices for strengthening the reinforced concrete structures is the application of FRP (Fiber Reinforce Plastic) sheets to increase the flexural and shear strengths of the member. The elastic modulus of FRP is considerably higher than that of concrete. This will result in debonding between the FRP sheets and concrete surface. With conventional surface preparation of concrete, the ultimate capacity of the FRP sheets can hardly be achieved. New methods for preparation of the bonding surface have shown improvements in reducing the premature debonding of FRP sheets from concrete surface. The present experimental study focuses on the application of grooving method to postpone debonding of the FRP sheets attached to the side faces of concrete beams for shear strengthening. Comparison has also been made with conventional surface preparation method. This study clearly shows the efficiency of grooving method compared to surface preparation method, in preventing the debonding phenomenon and in increasing the load carrying capacity of FRP.

Keywords: FRP composite, grooving, rehabilitation, reinforced concrete, shear strengthening, surface preparation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
292 Production of 3-Methyl-1-Butanol by Yeast Wild Strain

Authors: R. Nor Azah, A. R. Roshanida, N. Norzita

Abstract:

The biomass-based fuels have become great concern in order to replace the petroleum-based fuels. Biofuels are a wide range of fuels referred to liquid, gas and solid fuels produced from biomass. Recently, higher chain alcohols such as 3-methyl-1-butanol and isobutanol have become a better candidate compared to bioethanol in order to replace gasoline as transportation fuel. Therefore, in this study, 3-methyl-1-butanol was produced through a fermentation process by yeast. Several types of yeast involved in this research including Saccharomyces cerevisiae, Kluyveromyces lactis GG799 and Pichia pastoris (KM71H, GS115 and X33). The result obtained showed that K. lactis GG799 gave the highest concentration of 3-methyl-1-butanol at 274 mg/l followed by S. cerevisiae, P. pastoris GS115, P. pastoris KM71H and P. pastoris X33 at 265 mg/l, 190 mg/l, 182 mg/l and 174 mg/l respectively. Based on the result, it proved that yeast have a potential in producing 3-methyl-1-butanol naturally.

Keywords: Biofuel, fermentation, 3-methyl-1-butanol, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
291 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint

Authors: M. Najafi, F. Rahimi Dehgolan

Abstract:

In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.

Keywords: Non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
290 Effect of Plastic Fines on Undrained Behavior of Clayey Sands

Authors: Saeed Talamkhani, Seyed Abolhassan Naeini

Abstract:

In recent years, the occurrence of several liquefactions in sandy soils containing various values of clay content has shown that in addition to silty sands, clayey sands are also susceptible to liquefaction. Therefore, it is necessary to investigate the properties of these soil compositions and their behavioral characteristics. This paper presents the effect of clay fines on the undrained shear strength of sands at various confining pressures. For this purpose, a series of unconsolidated undrained triaxial shear tests were carried out on clean sand and sand mixed with 5, 10, 15, 20, and 30 percent of clay fines. It was found that the presence of clay particle in sandy specimens change the dilative behavior to contraction. The result also showed that increasing the clay fines up to 10 percent causes to increase the potential for liquefaction, and decreases it at higher values fine content. These results reveal the important role of clay particles in changing the undrained strength of the sandy soil.

Keywords: Clayey sand, liquefaction, triaxial test, undrained shear strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
289 The Biomechanical Properties of the Different Modalities of Surgically Corrected Coarctation of the Aorta in Neonates and Infants

Authors: Elina Ligere, Valts Ozolins, Lauris Smits, Normunds Sikora, Ivars Melderis, Laila Feldmane, Aris Lacis, Vladimir Kasyanov

Abstract:

Biomechanical properties of infantile aorta in vitro in cases of different standard anastomoses: end-to-end (ETE), extended anastomosis end-to-end (EETE) and subclavian flap aortoplasty (SFA) used for surgical correction of coarctation were analyzed to detect the influence of the method on the biomechanics of infantile aorta and possible changes in haemodinamics. 10 specimens of native aorta, 3 specimens with ETE, 4 EEET and 3 SFA were investigated. The experiments showed a non-linear relationship between stress and strain in the infantile aorta, the modulus of elasticity of the aortic wall increased with the increase of inner pressure. In the case of anastomosis end-to-end the modulus was almost constant, relevant to the modulus of elasticity of the aorta with the inner pressure 100-120 mmHg. The anastomoses EETE and SFA showed elastic properties closer to native aorta, the stiffness of ETE did not change with the changes in inner pressure.

Keywords: biomechanics, coarctation, mechanical properties, neonatal aorta

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
288 Standard and Processing of Photodegradable Polyethylene

Authors: Nurul-Akidah M. Yusak, Rahmah Mohamed, Noor Zuhaira Abd Aziz

Abstract:

The introduction of degradable plastic materials into agricultural sectors has represented a promising alternative to promote green agriculture and environmental friendly of modern farming practices. Major challenges of developing degradable agricultural films are to identify the most feasible types of degradation mechanisms, composition of degradable polymers and related processing techniques. The incorrect choice of degradable mechanisms to be applied during the degradation process will cause premature losses of mechanical performance and strength. In order to achieve controlled process of agricultural film degradation, the compositions of degradable agricultural film also important in order to stimulate degradation reaction at required interval of time and to achieve sustainability of the modern agricultural practices. A set of photodegradable polyethylene based agricultural film was developed and produced, following the selective optimization of processing parameters of the agricultural film manufacturing system. Example of agricultural films application for oil palm seedlings cultivation is presented.

Keywords: Photodegradable polyethylene, plasticulture, processing schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
287 Improvement in Silicon on Insulator Devices using Strained Si/SiGe Technology for High Performance in RF Integrated Circuits

Authors: Morteza Fathipour, Samira Omidbakhsh, Kimia Khodayari

Abstract:

RF performance of SOI CMOS device has attracted significant amount of interest recently. In order to improve RF parameters, Strained Si/Relaxed Si0.8Ge0.2 investigated as a replacement for Si technology .Enhancement of carrier mobility associated with strain engineering makes Strained Si a promising candidate for improving RF performance of CMOS technology. From the simulation, the cut-off frequency is estimated to be 224 GHZ, whereas in SOI at similar bias is about 188 GHZ. Therefore, Strained Si exhibits 19% improvement in cut-off frequency over similar Si counterpart. In this paper, Ion/Ioff ratio is studied as one of the key parameters in logic and digital application. Strained Si/SiGe demonstrates better Ion/Ioff characteristic than SOI, in similar channel length of 100 nm.Another important key analog figures of merit such as Early Voltage (VEA) ,transconductance vs drain current (gm /Ids) are studied. They introduce the efficiency of the devices to convert dc power into ac frequency.

Keywords: cut-off frequency, RF application, Silicon oninsulator, Strained Si/SiGe on insulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
286 Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria

Authors: Edjere Oghenekohwiroro, Asibor Irabor Godwin, Uwem Bassey

Abstract:

This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them.

Keywords: Phthalate esters, borehole, sachet water, sample extraction, gas chromatography, GC-MS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
285 Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load

Authors: A. Aarabzadeh, R. Hizaji

Abstract:

Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads.

Keywords: Deep beam, cyclic load, reinforced concrete, fixed-ended.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
284 Reduced Inventories, High Reliability and Short Throughput Times by Using CONWIP Production Planning System

Authors: Tomas Duranik, Juraj Ruzbarsky, Markus Stopper

Abstract:

CONWIP (constant work-in-process) as a pull production system have been widely studied by researchers to date. The CONWIP pull production system is an alternative to pure push and pure pull production systems. It lowers and controls inventory levels which make the throughput better, reduces production lead time, delivery reliability and utilization of work. In this article a CONWIP pull production system was simulated. It was simulated push and pull planning system. To compare these systems via a production planning system (PPS) game were adjusted parameters of each production planning system. The main target was to reduce the total WIP and achieve throughput and delivery reliability to minimum values. Data was recorded and evaluated. A future state was made for real production of plastic components and the setup of the two indicators with CONWIP pull production system which can greatly help the company to be more competitive on the market.

Keywords: CONWIP, constant work in process, delivery reliability, hybrid production planning, PPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
283 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
282 Noise Depressed in a Micro Stepping Motor

Authors: Bo-Wun Huang, Jao-Hwa Kuang, J.-G. Tseng, Yan-De Wu

Abstract:

An investigation of noise in a micro stepping motor is considered to study in this article. Because of the trend towards higher precision and more and more small 3C (including Computer, Communication and Consumer Electronics) products, the micro stepping motor is frequently used to drive the micro system or the other 3C products. Unfortunately, noise in a micro stepped motor is too large to accept by the customs. To depress the noise of a micro stepped motor, the dynamic characteristics in this system must be studied. In this article, a Visual Basic (VB) computer program speed controlled micro stepped motor in a digital camera is investigated. Karman KD2300-2S non-contract eddy current displacement sensor, probe microphone, and HP 35670A analyzer are employed to analyze the dynamic characteristics of vibration and noise in a motor. The vibration and noise measurement of different type of bearings and different treatment of coils are compared. The rotating components, bearings, coil, etc. of the motor play the important roles in producing vibration and noise. It is found that the noise will be depressed about 3~4 dB and 6~7 dB, when substitutes the copper bearing with plastic one and coats the motor coil with paraffin wax, respectively.

Keywords: micro motor, noise, vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713