Search results for: accumulation of artificial radionuclides
643 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.
Keywords: Artificial neural network, load estimation, regional survey, rural electrification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359642 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou
Abstract:
Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.
Keywords: Calibration, dynamic range, radiometric resolution, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340641 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater
Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu
Abstract:
The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.Keywords: Algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, nutrients removal, saline wastewater, sequencing batch reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176640 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.
Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920639 Big Data: Concepts, Technologies and Applications in the Public Sector
Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora
Abstract:
Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.
Keywords: Big data, big data Analytics, Hadoop framework, cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321638 Korea and Japan Economic Relations: An Analysis through the World Trade Organization
Authors: Caroline S. Dutra, Tatiana C. Squeff
Abstract:
It is well known that the history between South Korea and Japan influences their international relations; thus, also encompassing their economic relations. In this sense, it is impossible to analyze the latter without understanding the development of the former, which is known for episodes of hostility, like on Japanese colonization, but also had moments of cultural and trade interexchange. Indeed, since 1965, with the establishment of diplomatic relations between both countries, their trade relations have improved, especially after both nations have signed the General Agreement on Tariffs and Trade (GATT). Thereafter, with the establishment of the World Trade Organization (WTO) in 1995, another chapter of their diplomatic and economic relations have been inaugurated. Hence, bearing in mind this history between both nations, this research intends to examine their relations through the analysis of the WTO panels they have engaged in between each other, which are, in chronological order, “DS323: Japan – Import Quotas on Dried Laver and Seasoned Laver”, “DS336: Japan - Countervailing Duties on Dynamic Random Access Memories from Korea”, “DS495: Korea - Import Band, and Testing and Certification Requirements for Radionuclides”, “DS553: Korea - Sunset Review of Anti-Dumping Duties on Stainless Steel Bars” and “DS571: Korea - Measures Affecting Trade in Commercial Vessels”. The objective of this case analysis is to point out what are the areas that are more conflictual between Japan and South Korea in regard to their economic relations so that it is possible to assert on their future (economic) relations and other possible outcomes. And in order to do so, bibliographic and documental research will be made, particularly those involving the WTO and the nations under consideration. Regarding the methods used, it is important to highlight that this is applied research in the field of international economic relations and international law, which follows a hypothetic-deductive model.
Keywords: International economic relations, Japan, South Korea, World Trade Organization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958637 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: Intrusion prevention, network security, optimal policy, Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022636 Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals
Authors: C. C. D. Kulathilake, M. Jayatilake, T. Takahashi
Abstract:
The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.Keywords: Autoradiographs, fatty acid, radiopharmaceuticals and sugar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443635 AI-Based Approaches for Task Offloading, Resource Allocation and Service Placement of IoT Applications: State of the Art
Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib
Abstract:
In order to support the continued growth, critical latency of IoT applications and various obstacles of traditional data centers, Mobile Edge Computing (MEC) has emerged as a promising solution that extends the cloud data-processing and decision-making to edge devices. By adopting a MEC structure, IoT applications could be executed locally, on an edge server, different fog nodes or distant cloud data centers. However, we are often faced with wanting to optimize conflicting criteria such as minimizing energy consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge devices and trying to keep high performance (reducing response time, increasing throughput and service availability) at the same time. Achieving one goal may affect the other making Task Offloading (TO), Resource Allocation (RA) and Service Placement (SP) complex processes. It is a nontrivial multi-objective optimization problem to study the trade-off between conflicting criteria. The paper provides a survey on different TO, SP and RA recent Multi-Objective Optimization (MOO) approaches used in edge computing environments, particularly Artificial Intelligent (AI) ones, to satisfy various objectives, constraints and dynamic conditions related to IoT applications.
Keywords: Mobile Edge Computing, Multi-Objective Optimization, Artificial Intelligence Approaches, Task Offloading, Resource Allocation, Service Placement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514634 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options
Authors: Zeynep İltüzer Samur, Gül Tekin Temur
Abstract:
Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.
Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084633 Design Consideration of a Plastic Shredder in Recycling Processes
Authors: Tolulope A. Olukunle
Abstract:
Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.
Keywords: Design, machine, plastic waste, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5194632 Prediction of Road Accidents in Qatar by 2022
Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa
Abstract:
There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.
Keywords: Road Safety, Prediction, Accident, Model, Qatar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631631 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils
Authors: Reza Ziaie Moayed, Saeideh Mohammadi
Abstract:
Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.
Keywords: Cement-treated soils, pile, lateral capacity, FLAC 3D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791630 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868629 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.
Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201628 Effect of Castration on CLA in Meat Goats
Authors: P. Paengkoum, T. Phonmun, S. Paengkoum
Abstract:
Twenty four male Thai native × Anglo-Nubian crossbred goats were randomly allocated to receive four treatments. The experiment was conducted for four months and slaughtered that the Longissimus dorsi muscle was collected for fatty acid analysis. The results conclude that either castrated method or ages had no significantly different on monounsaturated fatty acid (MUFA) (P>0.05) except erucic acid (C22:1n9). Interaction between castrated method and ages had significantly different in MUFA (P<0.01). Although the effect of castration method and age are not difference on fatty acid composition, it contributed to known that difference castration method and age (surgical and budizzo) no effect on accumulation fatty acid in meat goats.Keywords: Castration, goat, CLA, meat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350627 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376626 Radon-222 Concentration and Potential Risk to Workers of Al-Jalamid Phosphate Mines, North Province, Saudi Arabia
Authors: El-Said. I. Shabana, Mohammad S. Tayeb, Maher M. T. Qutub, Abdulraheem A. Kinsara
Abstract:
Usually, phosphate deposits contain 238U and 232Th in addition to their decay products. Due to their different pathways in the environment, the 238U/232Th activity concentration ratio usually found to be greater than unity in phosphate sediments. The presence of these radionuclides creates a potential need to control exposure of workers in the mining and processing activities of the phosphate minerals in accordance with IAEA safety standards. The greatest dose to workers comes from exposure to radon, especially 222Rn from the uranium series, and has to be controlled. In this regard, radon (222Rn) was measured in the atmosphere (indoor and outdoor) of Al-Jalamid phosphate-mines working area using a portable radon-measurement instrument RAD7, in a purpose of radiation protection. Radon was measured in 61 sites inside the open phosphate mines, the phosphate upgrading facility (offices and rooms of the workers, and in some open-air sites) and in the dwellings of the workers residence-village that lies at about 3 km from the mines working area. The obtained results indicated that the average indoor radon concentration was about 48.4 Bq/m3. Inside the upgrading facility, the average outdoor concentrations were 10.8 and 9.7 Bq/m3 in the concentrate piles and crushing areas, respectively. It was 12.3 Bq/m3 in the atmosphere of the open mines. These values are comparable with the global average values. Based on the average values, the annual effective dose due to radon inhalation was calculated and risk estimates have been done. The average annual effective dose to workers due to the radon inhalation was estimated by 1.32 mSv. The potential excess risk of lung cancer mortality that could be attributed to radon, when considering the lifetime exposure, was estimated by 53.0x10-4. The results have been discussed in detail.
Keywords: Dosimetry, environmental monitoring, phosphate deposits, radiation protection, radon-22.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393625 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.
Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974624 Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI) techniques control is used to control the fuel cell output power by control input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparison study is applied between the performance of fuzzy logic control (FLC) and neural network control (NNC). The results show the effectiveness of NNC over FLC.Keywords: PEM fuel cell, Diffused aeration system, Artificialintelligence (AI) techniques, neural network control, fuzzy logiccontrol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214623 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829622 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation and workplace motivation. Hybrid human-AI systems require development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.
Keywords: Employee decision making, artificial intelligence, environment, human trust, technology innovation, psychological safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583621 Appraisal of Trace Elements in Scalp Hair of School Children in Kandal Province, Cambodia
Authors: A. Yavar, S. Sarmani, K. S. Khoo
Abstract:
The analysis of trace elements in human hair provides crucial insights into an individual's nutritional status and environmental exposure. This research aimed to examine the levels of toxic and essential elements in the scalp hair of school children aged 12-17 from three villages (Anglong Romiot (AR), Svay Romiot (SR), and Kampong Kong (KK)) in Cambodia's Kandal province, a region where residents are especially vulnerable to toxic elements, notably arsenic (As), due to their dietary habits, lifestyle, and environmental conditions. The scalp hair samples were analyzed using the k0-Instrumental Neutron Activation method (k0-INAA), with a six-hour irradiation period in the Malaysian Nuclear Agency (MNA) research reactor followed by High Purity Germanium (HPGe) detector use to identify the gamma peaks of radionuclides. The analysis identified 31 elements in the human hair from the study area, including As, Au, Br, Ca, Ce, Co, Dy, Eu-152m, Hg-197, Hg-203, Ho, Ir, K, La, Lu, Mn, Na, Pa, Pt-195m, Pt-197, Sb, Sc-46, Sc-47, Sm, Sn-117m, W-181, W-187, Yb-169, Yb-175, Zn, and Zn-69m. The accuracy of the method was verified through the analysis of ERM-DB001-human hair as a Certified Reference Material (CRM), with the results demonstrating consistency with the certified values. Given the prevalent arsenic pollution in the research area, the study also examined the relationship between the concentration of As and other elements using Pearson's correlation test. The outcomes offer a comprehensive resource for future investigations into toxic and essential element presence in the region. In the main body of the paper, a more extensive discussion on the implications of arsenic pollution and the correlations observed is provided to enhance understanding and inform future research directions.
Keywords: Human scalp hair, toxic and essential elements, Kandal Province, Cambodia, k0-Instrumental Neutron Activation Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263620 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: Brain-computer interface, speech recognition, electroencephalography EEG, Wernicke area, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918619 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541618 EZW Coding System with Artificial Neural Networks
Authors: Saudagar Abdul Khader Jilani, Syed Abdul Sattar
Abstract:
Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.Keywords: Accuracy, Compression, EZW, JPEG2000, Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933617 Concrete Mix Design Using Neural Network
Authors: Rama Shanker, Anil Kumar Sachan
Abstract:
Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.
Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638616 Research on Modern Semiconductor Converters and the Usage of SiC Devices in the Technology Centre of Ostrava
Authors: P. Vaculík, P. Kaňovský
Abstract:
The following article presents Technology Centre of Ostrava (TCO) in the Czech Republic describing the structure and main research areas realized by the project ENET - Energy Units for Utilization of non Traditional Energy Sources. More details are presented from the research program dealing with transformation, accumulation and distribution of electric energy. Technology Centre has its own energy mix consisting of alternative sources of fuel sources that use of process gases from the storage part and also the energy from distribution network. The article will be focus on the properties and application possibilities SiC semiconductor devices for power semiconductor converter for photovoltaic systems.Keywords: SiC, Si, Technology Centre of Ostrava, Photovoltaic Systems, DC/DC Converter, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841615 Inductions of CaC2 on Sperm Morphology and Viability of the Albino Mice (Mus musculus)
Authors: Dike H. Ogbuagu, Etsede J. Oritsematosan
Abstract:
This work investigated possible inductions of CaC2, often misused by fruit vendors to stimulate artificial ripening, on mammalian sperm morphology and viability. Thirty isogenic strains of male albino mice, Mus musculus (age≈ 8weeks; weight= 32.52.0g) were acclimatized (ambient temperature 28.0±1.0°C) for 2 weeks and fed standard growers mash and water ad libutum. They were later exposed to graded toxicant concentrations (w/w) of 2.5000, 1.2500, 0.6250, and 0.3125% in 4 cages. A control cage was also established. After 5 weeks, 3 animals from each cage were sacrificed by cervical dislocation and the cauda epididymis excised. Sperm morphology and viability were determined by microscopic procedures. The ANOVA, means plots, Student’s t-test and variation plots were used to analyze data. The common abnormalities observed included Double Head, Pin Head, Knobbed Head, No Tail and With Hook. The higher toxicant concentrations induced significantly lower body weights [F(829.899) ˃ Fcrit(4.19)] and more abnormalities [F(26.52) ˃ Fcrit(4.00)] at P˂0.05. Sperm cells in the control setup were significantly more viable than those in the 0.625% (t=0.005) and 2.500% toxicant doses (t=0.018) at the 95% confidence limit. CaC2 appeared to induced morphological abnormalities and reduced viability in sperm cells of M. musculus.
Keywords: Artificial ripening, Calcium carbide, fruit vendors, sperm morphology, sperm viability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396614 Robot Task-Level Programming Language and Simulation
Authors: M. Samaka
Abstract:
This paper presents the development of a software application for Off-line robot task programming and simulation. Such application is designed to assist in robot task planning and to direct manipulator motion on sensor based programmed motion. The concept of the designed programming application is to use the power of the knowledge base for task accumulation. In support of the programming means, an interactive graphical simulation for manipulator kinematics was also developed and integrated into the application as the complimentary factor to the robot programming media. The simulation provides the designer with useful, inexpensive, off-line tools for retain and testing robotics work cells and automated assembly lines for various industrial applications.Keywords: Robot programming, task-level programming, robot languages, robot simulation, robotics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262