Search results for: Watermark estimation remodulation (WER)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1122

Search results for: Watermark estimation remodulation (WER)

642 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems

Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.

Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3422
641 A Model for Estimation of Efforts in Development of Software Systems

Authors: Parvinder S. Sandhu, Manisha Prashar, Pourush Bassi, Atul Bisht

Abstract:

Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.

Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model, GA Based Model, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3226
640 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs

Authors: S. Chaisit, H.Y. Kung, N.T. Phuong

Abstract:

Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.

Keywords: BPNs, indoor location, location estimation, intelligent location identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
639 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: Digital Twin, Distribution System Operator, Electrical Distribution System, Smart Grid Controller, Supervisory Control and Data Acquisition System, Smart Recursive Load Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253
638 Emergency Generator Sizing and Motor Starting Analysis

Authors: Mukesh Kumar Kirar, Ganga Agnihotri

Abstract:

This paper investigates the preliminary sizing of generator set to design electrical system at the early phase of a project, dynamic behavior of generator-unit, as well as induction motors, during start-up of the induction motor drives fed from emergency generator unit. The information in this paper simplifies generator set selection and eliminates common errors in selection. It covers load estimation, step loading capacity test, transient analysis for the emergency generator set. The dynamic behavior of the generator-unit, power, power factor, voltage, during Direct-on-Line start-up of the induction motor drives fed from stand alone gene-set is also discussed. It is important to ensure that plant generators operate safely and consistently, power system studies are required at the planning and conceptual design stage of the project. The most widely recognized and studied effect of motor starting is the voltage dip that is experienced throughout an industrial power system as the direct online result of starting large motors. Generator step loading capability and transient voltage dip during starting of largest motor is ensured with the help of Electrical Transient Analyzer Program (ETAP).

Keywords: Sizing, induction motor starting, load estimation, Transient Analyzer Program (ETAP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13975
637 Measurement of Real Time Drive Cycle for Indian Roads and Estimation of Component Sizing for HEV using LABVIEW

Authors: Varsha Shah, Patel Pritesh, Patel Sagar, PrasantaKundu, RanjanMaheshwari

Abstract:

Performance of vehicle depends on driving patterns and vehicle drive train configuration. Driving patterns depends on traffic condition, road condition and driver behavior. HEV design is carried out under certain constrain like vehicle operating range, acceleration, decelerations, maximum speed and road grades which are directly related to the driving patterns. Therefore the detailed study on HEV performance over a different drive cycle is required for selection and sizing of HEV components. A simple hardware is design to measured velocity v/s time profile of the vehicle by operating vehicle on Indian roads under real traffic conditions. To size the HEV components, a detailed dynamic model of the vehicle is developed considering the effect of inertia of rotating components like wheels, drive chain, engine and electric motor. Using vehicle model and different Indian drive cycles data, total tractive power demanded by vehicle and power supplied by individual components has been calculated.Using above information selection and estimation of component sizing for HEV is carried out so that HEV performs efficiently under hostile driving condition. Complete analysis is carried out in LABVIEW.

Keywords: BLDC motor, Driving cycle, LABVIEW Ultracapacitors, Vehicle Dynamics,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3900
636 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract:

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Keywords: Non-stationary, BINARMA(1, 1) model, Poisson Innovations, CML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
635 Specification Requirements for a Combined Dehumidifier/Cooling Panel: A Global Scale Analysis

Authors: Damien Gondre, Hatem Ben Maad, Abdelkrim Trabelsi, Frédéric Kuznik, Joseph Virgone

Abstract:

The use of a radiant cooling solution would enable to lower cooling needs which is of great interest when the demand is initially high (hot climate). But, radiant systems are not naturally compatibles with humid climates since a low-temperature surface leads to condensation risks as soon as the surface temperature is close to or lower than the dew point temperature. A radiant cooling system combined to a dehumidification system would enable to remove humidity for the space, thereby lowering the dew point temperature. The humidity removal needs to be especially effective near the cooled surface. This requirement could be fulfilled by a system using a single desiccant fluid for the removal of both excessive heat and moisture. This task aims at providing an estimation of the specification requirements of such system in terms of cooling power and dehumidification rate required to fulfill comfort issues and to prevent any condensation risk on the cool panel surface. The present paper develops a preliminary study on the specification requirements, performances and behavior of a combined dehumidifier/cooling ceiling panel for different operating conditions. This study has been carried using the TRNSYS software which allows nodal calculations of thermal systems. It consists of the dynamic modeling of heat and vapor balances of a 5m x 3m x 2.7m office space. In a first design estimation, this room is equipped with an ideal heating, cooling, humidification and dehumidification system so that the room temperature is always maintained in between 21C and 25C with a relative humidity in between 40% and 60%. The room is also equipped with a ventilation system that includes a heat recovery heat exchanger and another heat exchanger connected to a heat sink. Main results show that the system should be designed to meet a cooling power of 42W.m−2 and a desiccant rate of 45 gH2O.h−1. In a second time, a parametric study of comfort issues and system performances has been achieved on a more realistic system (that includes a chilled ceiling) under different operating conditions. It enables an estimation of an acceptable range of operating conditions. This preliminary study is intended to provide useful information for the system design.

Keywords: Dehumidification, nodal calculation, radiant cooling panel, system sizing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
634 Estimation of the Bit Side Force by Using Artificial Neural Network

Authors: Mohammad Heidari

Abstract:

Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.

Keywords: Artificial Neural Network, BHA, Horizontal Well, Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
633 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern

Authors: Rupesh K. Gopal, Saroj K. Meher

Abstract:

In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.

Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812
632 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
631 Rapid Determination of Biochemical Oxygen Demand

Authors: Mayur Milan Kale, Indu Mehrotra

Abstract:

Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.

Keywords: BOD, Four methods, Rapid estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639
630 Video Matting based on Background Estimation

Authors: J.-H. Moon, D.-O Kim, R.-H. Park

Abstract:

This paper presents a video matting method, which extracts the foreground and alpha matte from a video sequence. The objective of video matting is finding the foreground and compositing it with the background that is different from the one in the original image. By finding the motion vectors (MVs) using a sliced block matching algorithm (SBMA), we can extract moving regions from the video sequence under the assumption that the foreground is moving and the background is stationary. In practice, foreground areas are not moving through all frames in an image sequence, thus we accumulate moving regions through the image sequence. The boundaries of moving regions are found by Canny edge detector and the foreground region is separated in each frame of the sequence. Remaining regions are defined as background regions. Extracted backgrounds in each frame are combined and reframed as an integrated single background. Based on the estimated background, we compute the frame difference (FD) of each frame. Regions with the FD larger than the threshold are defined as foreground regions, boundaries of foreground regions are defined as unknown regions and the rest of regions are defined as backgrounds. Segmentation information that classifies an image into foreground, background, and unknown regions is called a trimap. Matting process can extract an alpha matte in the unknown region using pixel information in foreground and background regions, and estimate the values of foreground and background pixels in unknown regions. The proposed video matting approach is adaptive and convenient to extract a foreground automatically and to composite a foreground with a background that is different from the original background.

Keywords: Background estimation, Object segmentation, Blockmatching algorithm, Video matting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
629 Instant Location Detection of Objects Moving at High-Speedin C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data of the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as «signaling parameters» (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of COTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources, but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as rule. This report contains describing of the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.

Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
628 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the creditscoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: Credit-scoring Models, Multidimensional Subordinated Lévy Model, Probability of Default.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
627 Is Curcumine Effect Comparable to 5- Aminosalicylic Acid or Budesonide on a Rat Model of Ulcerative Colitis Induced by Trinitrobenzene Sulfonic Acid?

Authors: Inas E. Darwish, Alia M. Arab, Tarek A. Azeim, Teshreen M. Zeitoun, Wafaa A. Hewedy, Moemen A. Heiba, Iman S. Emara

Abstract:

Inflammatory bowel disease (IBD) is a chronic relapsing-remitting condition that afflicts millions of people throughout the world and impairs their daily functions and quality of life. Treatment of IBD depends largely on 5-aminosalicylic acid (5- ASA) and corticosteroids. The present study aimed to clarify the effects of 5-aminosalicylic acid, budesonide and currcumin on 90 male albino rats against trinitrobenzene sulfonic acid (TNB) induced colitis. TNB was injected intrarectally to 50 rats. The other 40 rats served as control groups. Both 5-ASA (in a dose of 120 mg/kg) and budesonide (in a dose of 0.1 mg/kg) were administered daily for one week whereas currcumin was injected intraperitonially (in a dose of 30 mg/kg daily) for 14 days after injection of either TNB in the colitis rats (group B) or saline in control groups (group A). The study included estimation of macroscopic score index, histological examination of H&E stained sections of the colonic tissue, biochemical estimation of myeloperoxidase (MPO), nitric oxide (NO), and caspase-3 levels, in addition to studying the effect of tested drugs on colonic motility. It was found that budesonide and curcumin improved mucosal healing, reduced both NO production and caspase- 3 level. They had the best impact on the disturbed colonic motility in TNBS-model of colitis.

Keywords: Colitis, curcumin, nitric oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
626 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of a Digital-Noiseless, Ultra-High-Speed Image Sensor

Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi

Abstract:

Since 2004, we have been developing an in-situ storage image sensor (ISIS) that captures more than 100 consecutive images at a frame rate of 10 Mfps with ultra-high sensitivity as well as the video camera for use with this ISIS. Currently, basic research is continuing in an attempt to increase the frame rate up to 100 Mfps and above. In order to suppress electro-magnetic noise at such high frequency, a digital-noiseless imaging transfer scheme has been developed utilizing solely sinusoidal driving voltages. This paper presents highly efficient-yet-accurate expressions to estimate attenuation as well as phase delay of driving voltages through RC networks of an ultra-high-speed image sensor. Elmore metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE data, we found a simple expression that significantly improves the accuracy of the approximation. Similarly, another simple closed-form model to estimate phase delay through fundamental RC networks is also obtained. Estimation error of both expressions is much less than previous works, only less 2% for most of the cases . The framework of this analysis can be extended to address similar issues of other VLSI structures.

Keywords: Dimensional Analysis, ISIS, Digital-noiseless, RC network, Attenuation, Phase Delay, Elmore model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
625 Estimation of Crustal Thickness within the Sokoto Basin North-Western Nigeria Using Bouguer Gravity Anomaly Data

Authors: T. T. Olugbenga, A. I. Augie

Abstract:

This research proposes an interpretation of the Bouguer’ gravity anomaly data of some parts of Sokoto basin for the estimation of crustal thickness. The study area is bounded between latitudes 1100′0″N and 1300′0″N, and longitudes 400′0″E and 600′0″E that covered Koko, Jega, B/Kebbi, Argungu, Lema, Bodinga, Tamgaza, Gunmi,Daki Takwas, Dange, Sokoto, Ilella, T/Mafara, Anka, Maru, Gusau, K/Namoda, and Sabon Birni within Sokoto, Kebbi and Zamfara state respectively. The established map of the study area was digitized in X, Y and Z format using excel software package and the digitized data were processed using Surfer version 13 software. The Moho and Conrad depths based on a relationship between Bouguer’ gravity anomaly determined crustal thickness were estimated as 35 to 37 km and 19 to 21 km, respectively. The crustal region has been categorized into: Crustal thinning zone that is the region with high gravity anomaly value due to its greater geothermal energy and also Crustal thickening zone which the region with low anomaly values due to its lower geothermal energy. Birnin kebbi, Jega, Sokoto were identified as the region of hydrocarbon potential with an estimate of 35 km thickness within the crustal region which is referred to as crustal thickening as a result of its low but sufficient geothermal energy to decompose organic matter within the region to form hydrocarbons.

Keywords: Bouguer gravity anomaly, crustal thickness, geothermal energy, hydrocarbons, Moho and Conrad Depths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 651
624 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 542
623 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
622 Estimation of Relative Permeabilities and Capillary Pressures in Shale Using Simulation Method

Authors: F. C. Amadi, G. C. Enyi, G. Nasr

Abstract:

Relative permeabilities are practical factors that are used to correct the single phase Darcy’s law for application to multiphase flow. For effective characterisation of large-scale multiphase flow in hydrocarbon recovery, relative permeability and capillary pressures are used. These parameters are acquired via special core flooding experiments. Special core analysis (SCAL) module of reservoir simulation is applied by engineers for the evaluation of these parameters. But, core flooding experiments in shale core sample are expensive and time consuming before various flow assumptions are achieved for instance Darcy’s law. This makes it imperative for the application of coreflooding simulations in which various analysis of relative permeabilities and capillary pressures of multiphase flow can be carried out efficiently and effectively at a relative pace. This paper presents a Sendra software simulation of core flooding to achieve to relative permeabilities and capillary pressures using different correlations. The approach used in this study was three steps. The first step, the basic petrophysical parameters of Marcellus shale sample such as porosity was determined using laboratory techniques. Secondly, core flooding was simulated for particular scenario of injection using different correlations. And thirdly the best fit correlations for the estimation of relative permeability and capillary pressure was obtained. This research approach saves cost and time and very reliable in the computation of relative permeability and capillary pressures at steady or unsteady state, drainage or imbibition processes in oil and gas industry when compared to other methods.

Keywords: Special core analysis (SCAL), relative permeability, capillary pressures, drainage, imbibition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
621 Improved Estimation of Evolutionary Spectrum based on Short Time Fourier Transforms and Modified Magnitude Group Delay by Signal Decomposition

Authors: H K Lakshminarayana, J S Bhat, H M Mahesh

Abstract:

A new estimator for evolutionary spectrum (ES) based on short time Fourier transform (STFT) and modified group delay function (MGDF) by signal decomposition (SD) is proposed. The STFT due to its built-in averaging, suppresses the cross terms and the MGDF preserves the frequency resolution of the rectangular window with the reduction in the Gibbs ripple. The present work overcomes the magnitude distortion observed in multi-component non-stationary signals with STFT and MGDF estimation of ES using SD. The SD is achieved either through discrete cosine transform based harmonic wavelet transform (DCTHWT) or perfect reconstruction filter banks (PRFB). The MGDF also improves the signal to noise ratio by removing associated noise. The performance of the present method is illustrated for cross chirp and frequency shift keying (FSK) signals, which indicates that its performance is better than STFT-MGDF (STFT-GD) alone. Further its noise immunity is better than STFT. The SD based methods, however cannot bring out the frequency transition path from band to band clearly, as there will be gap in the contour plot at the transition. The PRFB based STFT-SD shows good performance than DCTHWT decomposition method for STFT-GD.

Keywords: Evolutionary Spectrum, Modified Group Delay, Discrete Cosine Transform, Harmonic Wavelet Transform, Perfect Reconstruction Filter Banks, Short Time Fourier Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
620 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: Soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
619 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: Chlorophenolics, effluent, electrochemical treatment, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
618 Drainage Prediction for Dam using Fuzzy Support Vector Regression

Authors: S. Wiriyarattanakun, A. Ruengsiriwatanakun, S. Noimanee

Abstract:

The drainage Estimating is an important factor in dam management. In this paper, we use fuzzy support vector regression (FSVR) to predict the drainage of the Sirikrit Dam at Uttaradit province, Thailand. The results show that the FSVR is a suitable method in drainage estimating.

Keywords: Drainage Estimation, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
617 Stature Estimation Using Foot and Shoeprint Length of Malaysian Population

Authors: M. Khairulmazidah, A. B. Nurul Nadiah, A. R. Rumiza

Abstract:

Formulation of biological profile is one of the modern roles of forensic anthropologist. The present study was conducted to estimate height using foot and shoeprint length of Malaysian population. The present work can be very useful information in the process of identification of individual in forensic cases based on shoeprint evidence. It can help to narrow down suspects and ease the police investigation. Besides, stature is important parameters in determining the partial identify of unidentified and mutilated bodies. Thus, this study can help the problem encountered in cases of mass disaster, massacre, explosions and assault cases. This is because it is very hard to identify parts of bodies in these cases where people are dismembered and become unrecognizable. Samples in this research were collected from 200 Malaysian adults (100 males and 100 females) with age ranging from 20 to 45 years old. In this research, shoeprint length were measured based on the print of the shoes made from the flat shoes. Other information like gender, foot length and height of subject were also recorded. The data was analyzed using IBM® SPSS Statistics 19 software. Results indicated that, foot length has a strong correlation with stature than shoeprint length for both sides of the feet. However, in the unknown, where the gender was undetermined have shown a better correlation in foot length and shoeprint length parameter compared to males and females analyzed separately. In addition, prediction equations are developed to estimate the stature using linear regression analysis of foot length and shoeprint length. However, foot lengths give better prediction than shoeprint length. 

Keywords: Forensic anthropology, foot length, shoeprints, stature estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
616 Novel Adaptive Channel Equalization Algorithms by Statistical Sampling

Authors: János Levendovszky, András Oláh

Abstract:

In this paper, novel statistical sampling based equalization techniques and CNN based detection are proposed to increase the spectral efficiency of multiuser communication systems over fading channels. Multiuser communication combined with selective fading can result in interferences which severely deteriorate the quality of service in wireless data transmission (e.g. CDMA in mobile communication). The paper introduces new equalization methods to combat interferences by minimizing the Bit Error Rate (BER) as a function of the equalizer coefficients. This provides higher performance than the traditional Minimum Mean Square Error equalization. Since the calculation of BER as a function of the equalizer coefficients is of exponential complexity, statistical sampling methods are proposed to approximate the gradient which yields fast equalization and superior performance to the traditional algorithms. Efficient estimation of the gradient is achieved by using stratified sampling and the Li-Silvester bounds. A simple mechanism is derived to identify the dominant samples in real-time, for the sake of efficient estimation. The equalizer weights are adapted recursively by minimizing the estimated BER. The near-optimal performance of the new algorithms is also demonstrated by extensive simulations. The paper has also developed a (Cellular Neural Network) CNN based approach to detection. In this case fast quadratic optimization has been carried out by t, whereas the task of equalizer is to ensure the required template structure (sparseness) for the CNN. The performance of the method has also been analyzed by simulations.

Keywords: Cellular Neural Network, channel equalization, communication over fading channels, multiuser communication, spectral efficiency, statistical sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
615 Likelihood Estimation for Stochastic Epidemics with Heterogeneous Mixing Populations

Authors: Yilun Shang

Abstract:

We consider a heterogeneously mixing SIR stochastic epidemic process in populations described by a general graph. Likelihood theory is developed to facilitate statistic inference for the parameters of the model under complete observation. We show that these estimators are asymptotically Gaussian unbiased estimates by using a martingale central limit theorem.

Keywords: statistic inference, maximum likelihood, epidemicmodel, heterogeneous mixing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
614 Subpixel Detection of Circular Objects Using Geometric Property

Authors: Wen-Yen Wu, Wen-Bin Yu

Abstract:

In this paper, we propose a method for detecting circular shapes with subpixel accuracy. First, the geometric properties of circles have been used to find the diameters as well as the circumference pixels. The center and radius are then estimated by the circumference pixels. Both synthetic and real images have been tested by the proposed method. The experimental results show that the new method is efficient.

Keywords: Subpixel, least squares estimation, circle detection, Hough transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
613 Advanced Stochastic Models for Partially Developed Speckle

Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije

Abstract:

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743