Search results for: Multiple criteria classification
2832 A Novel Approach for Scheduling Rescue Robot Mission Using Decision Analysis
Authors: Rana Soltani-Zarrin, Sohrab Khanmohammadi
Abstract:
In this paper, a new method for multi criteria decision making is represented whichspecifies a trajectory satisfying desired criteria including minimization of time. A rescue robot is defined to perform certain tasks before the arrival of rescue team, including evaluation of the probability of explosion in the area, detecting human-beings, and providing preliminary aidsin case of identifying signs of life, so that the security of the surroundings will have enhanced significantly for the individuals inside the disaster zone as well as the rescue team. The main idea behind our technique is using the Program Evaluation and Review Technique analysis along with Critical Path Method and use the Multi Criteria Decision Making (MCDM) method to decidewhich set of activities must be performed first. Since the disastrous event in one area may be well contagious to others, it is one of the robot's priorities to evaluate the relative adversity of the situation, using the above methods and prioritize its mission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16682831 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.
Keywords: Multiclass classification, convolution neural network, OpenCV, Data Augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8142830 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays
Authors: Felix Che Shu
Abstract:
We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.
Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14912829 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.
Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10782828 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.
Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6542827 Transfer Knowledge from Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Tami Alghamdi, Terence Soule
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed that combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.
Keywords: Transfer Learning, Multiple Sources, Knowledge Transfer, Domain Adaptation, Source, Target.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3512826 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.
Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10912825 Curing Methods Yield Multiple Refractive Index of Benzocyclobutene Polymer Film
Authors: N.A.M. Yahya, W.H. Lim, S.W. Phang, H. Ahmad, R. Zakaria, F.R. Mahamd Adikan
Abstract:
Refractive index control of benzocyclobutene (BCB 4024-40) is achieved by facilitating different conditions during the thermal curing of BCB film. Refractive index (RI) change of 1.49% is obtained with curing of BCB film using an oven, while the RI change is 0.1% when the BCB is cured using a hotplate. The two different curing methods exhibit a temperature dependent refractive index change of the BCB photosensitive polymer. By carefully controlling the curing conditions, multiple layers of BCB with different RI can be fabricated, which can then be applied in the fabrication of optical waveguides.
Keywords: BCB 4024-40, curing method, multiple refractiveindex, polymers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27262824 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13132823 Effect of Multiple Taxation on Investments in Small and Medium Enterprises in Enugu State, Nigeria
Authors: Ebere U. Okolo, Eunice C. Okpalaojiego, Chimaobi V. Okolo
Abstract:
Some investors prefer to keep their money in the bank rather than invest in Small and Medium Enterprise (SME) due to the high cost of running small and medium scale enterprise in Enugu State. This cost primarily concerns multiple-taxation, enormous tax burdens, levies and charges. This study examines the effect of multiple-taxation on the investments in SMEs. The study used survey design with SME population of 80. Questionnaire was used to collect data. Simple percentages/frequencies were used to analyze the data and the research hypotheses were tested with ANOVA. It was found that multiple taxation has negative effect on SMEs investment. Furthermore, the relationship between SMEs investment and its ability to pay tax is significant. The researcher recommends that government should develop a tax policy that considers the enhancement of SMEs’ capital allowance when imposing taxes. Government should also consider a tax policy that encourages investment in SMEs by consolidating all taxes in one slot and latter disseminate to various government purses rather than having many closely related but different taxes at the same time.
Keywords: Investments, multiple taxation, small and medium enterprises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61992822 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322821 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes
Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22912820 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5672819 Optimized Facial Features-based Age Classification
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Shariful Islam, Nam Kim, Jae-Hyeung Park
Abstract:
The evaluation and measurement of human body dimensions are achieved by physical anthropometry. This research was conducted in view of the importance of anthropometric indices of the face in forensic medicine, surgery, and medical imaging. The main goal of this research is to optimization of facial feature point by establishing a mathematical relationship among facial features and used optimize feature points for age classification. Since selected facial feature points are located to the area of mouth, nose, eyes and eyebrow on facial images, all desire facial feature points are extracted accurately. According this proposes method; sixteen Euclidean distances are calculated from the eighteen selected facial feature points vertically as well as horizontally. The mathematical relationships among horizontal and vertical distances are established. Moreover, it is also discovered that distances of the facial feature follows a constant ratio due to age progression. The distances between the specified features points increase with respect the age progression of a human from his or her childhood but the ratio of the distances does not change (d = 1 .618 ) . Finally, according to the proposed mathematical relationship four independent feature distances related to eight feature points are selected from sixteen distances and eighteen feature point-s respectively. These four feature distances are used for classification of age using Support Vector Machine (SVM)-Sequential Minimal Optimization (SMO) algorithm and shown around 96 % accuracy. Experiment result shows the proposed system is effective and accurate for age classification.Keywords: 3D Face Model, Face Anthropometrics, Facial Features Extraction, Feature distances, SVM-SMO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20472818 Genetic Programming Based Data Projections for Classification Tasks
Authors: César Estébanez, Ricardo Aler, José M. Valls
Abstract:
In this paper we present a GP-based method for automatically evolve projections, so that data can be more easily classified in the projected spaces. At the same time, our approach can reduce dimensionality by constructing more relevant attributes. Fitness of each projection measures how easy is to classify the dataset after applying the projection. This is quickly computed by a Simple Linear Perceptron. We have tested our approach in three domains. The experiments show that it obtains good results, compared to other Machine Learning approaches, while reducing dimensionality in many cases.
Keywords: Classification, genetic programming, projections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13982817 Geometric Representation of Modified Forms of Seven Important Failure Criteria
Authors: Ranajay Bhowmick
Abstract:
Elastoplastic analysis of a structural system involves defining failure/yield criterion, flow rules and hardening rules. The failure/yield criterion defines the limit beyond which the material flows plastically and hardens/softens or remains perfectly plastic before ultimate collapse. The failure/yield criterion is represented geometrically in three/two dimensional Haigh-Westergaard stress-space to facilitate a better understanding of the behavior of the material. In the present study geometric representations in three and two-dimensional stress-space of a few important failure/yield criterion are presented. The criteria presented are the modified forms obtained due to the conditional solutions of the equation of stress invariants. A comparison of the failure/yield surfaces is also presented here to obtain the effectiveness of each of them and it has been found that for identical conditions the Rankine’s criterion gives the largest values of limiting stresses.
Keywords: Deviatoric plane, failure criteria, geometric representation, hydrostatic axis, modified form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3742816 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinié
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. In this context, the automation of this task is urgent. In this work, we compare classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN and Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches.
Keywords: Image segmentation, stuck particles separation, Sobel operator, thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012815 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis
Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra
Abstract:
This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.Keywords: Driver support systems, intelligent transportation systems, fuzzy logic, real time data processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12012814 Inconsistency Discovery in Multiple State Diagrams
Authors: Mohammad N. Alanazi, David A. Gustafson
Abstract:
In this article, we introduce a new approach for analyzing UML designs to detect the inconsistencies between multiple state diagrams and sequence diagrams. The Super State Analysis (SSA) identifies the inconsistencies in super states, single step transitions, and sequences. Because SSA considers multiple UML state diagrams, it discovers inconsistencies that cannot be discovered when considering only a single UML state diagram. We have introduced a transition set that captures relationship information that is not specifiable in UML diagrams. The SSA model uses the transition set to link transitions of multiple state diagrams together. The analysis generates three different sets automatically. These sets are compared to the provided sets to detect the inconsistencies. SSA identifies five types of inconsistencies: impossible super states, unreachable super states, illegal transitions, missing transitions, and illegal sequences.Keywords: Modeling Languages, Object-Oriented Analysis, Sequence Diagrams, Software Models, State Diagrams, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16512813 On the Optimality of Blocked Main Effects Plans
Authors: Rita SahaRay, Ganesh Dutta
Abstract:
In this article, experimental situations are considered where a main effects plan is to be used to study m two-level factors using n runs which are partitioned into b blocks, not necessarily of same size. Assuming the block sizes to be even for all blocks, for the case n ≡ 2 (mod 4), optimal designs are obtained with respect to type 1 and type 2 optimality criteria in the class of designs providing estimation of all main effects orthogonal to the block effects. In practice, such orthogonal estimation of main effects is often a desirable condition. In the wider class of all available m two level even sized blocked main effects plans, where the factors do not occur at high and low levels equally often in each block, E-optimal designs are also characterized. Simple construction methods based on Hadamard matrices and Kronecker product for these optimal designs are presented.Keywords: Design matrix, Hadamard matrix, Kronecker product, type 1 criteria, type 2 criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10532812 Dynamic Bus Binding for Low Power Using Multiple Binding Tables
Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho
Abstract:
A conventional binding method for low power in a high-level synthesis mainly focuses on finding an optimal binding for an assumed input data, and obtains only one binding table. In this paper, we show that a binding method which uses multiple binding tables gets better solution compared with the conventional methods which use a single binding table, and propose a dynamic bus binding scheme for low power using multiple binding tables. The proposed method finds multiple binding tables for the proper partitions of an input data, and switches binding tables dynamically to produce the minimum total switching activity. Experimental result shows that the proposed method obtains a binding solution having 12.6-28.9% smaller total switching activity compared with the conventional methods.Keywords: low power, bus binding, switching activity, multiplebinding tables
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11842811 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9102810 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3202809 Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range
Authors: Masahiro Kuzunishi, Tetsuya Furukawa, Ke Lu
Abstract:
Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.Keywords: Classification Hierarchies, Data Analysis, Multilabeled Data, Orders of Sets of Labels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12082808 Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam, Shahid Nawaz
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image processing, real-time recognition, weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21632807 Analytic Network Process in Location Selection and Its Application to a Real Life Problem
Authors: Eylem Koç, Hasan Arda Burhan
Abstract:
Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.
Keywords: Analytic Network Process, BOCR, location selection, multi-actor decision making, multi-criteria decision making, real life problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20882806 Investigation of Multiple Material Gate Impact on Short Channel Effects and Reliability of Nanoscale SOI MOSFETs
Authors: Paniz Tafakori, Ali A. Orouji
Abstract:
In this paper the features of multiple material gate silicon-on-insulator MOSFETs are presented and compared with single material gate silicon-on-insulator MOSFET structures. The results indicate that the multiple material gate structures reduce short channel effects such as drain induce barrier lowering, hot electron effect and better current characteristics in comparison with single material structuresKeywords: Short-channel effects (SCEs), Dual material gate (DMG), Triple material gate (TMG), Pentamerous material gate (PMG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20062805 Evaluation of Algorithms for Sequential Decision in Biosonar Target Classification
Authors: Turgay Temel, John Hallam
Abstract:
A sequential decision problem, based on the task ofidentifying the species of trees given acoustic echo data collectedfrom them, is considered with well-known stochastic classifiers,including single and mixture Gaussian models. Echoes are processedwith a preprocessing stage based on a model of mammalian cochlearfiltering, using a new discrete low-pass filter characteristic. Stoppingtime performance of the sequential decision process is evaluated andcompared. It is observed that the new low pass filter processingresults in faster sequential decisions.
Keywords: Classification, neuro-spike coding, parametricmodel, Gaussian mixture with EM algorithm, sequential decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15472804 Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems
Authors: Vladimir Veremey
Abstract:
The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H00 mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems.
Keywords: Antenna, antenna arrays, multiple-input-multiple-output, MIMO, millimeter wave bands, slot antenna, flush installation, directivity, open waveguide, conformal antennas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7732803 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.
Keywords: Classification, machine learning, time representation, stock prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154