Search results for: Finite State Machine.
4060 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16704059 Hybrid Finite Element Analysis of Expansion Joints for Piping Systems in Aircraft Engine External Configurations and Nuclear Power Plants
Authors: Dong Wook Lee
Abstract:
This paper presents a method to analyze the stiffness of the expansion joint with structural support using a hybrid method combining computational and analytical methods. Many expansion joints found in tubes and ducts of mechanical structures are designed to absorb thermal expansion mismatch between their structural members and deal with misalignments introduced from the assembly/manufacturing processes. One of the important design perspectives is the system’s vibrational characteristics. We calculate the stiffness as a characterization parameter for structural joint systems using a combined Finite Element Analysis (FEA) and an analytical method. We apply the methods to two sample applications: external configurations of aircraft engines and nuclear power plant structures.Keywords: Expansion joint, expansion joint stiffness, Finite Element Analysis, FEA, nuclear power plants, aircraft engine external configurations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7034058 Learning to Order Terms: Supervised Interestingness Measures in Terminology Extraction
Authors: Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag
Abstract:
Term Extraction, a key data preparation step in Text Mining, extracts the terms, i.e. relevant collocation of words, attached to specific concepts (e.g. genetic-algorithms and decisiontrees are terms associated to the concept “Machine Learning" ). In this paper, the task of extracting interesting collocations is achieved through a supervised learning algorithm, exploiting a few collocations manually labelled as interesting/not interesting. From these examples, the ROGER algorithm learns a numerical function, inducing some ranking on the collocations. This ranking is optimized using genetic algorithms, maximizing the trade-off between the false positive and true positive rates (Area Under the ROC curve). This approach uses a particular representation for the word collocations, namely the vector of values corresponding to the standard statistical interestingness measures attached to this collocation. As this representation is general (over corpora and natural languages), generality tests were performed by experimenting the ranking function learned from an English corpus in Biology, onto a French corpus of Curriculum Vitae, and vice versa, showing a good robustness of the approaches compared to the state-of-the-art Support Vector Machine (SVM).Keywords: Text-mining, Terminology Extraction, Evolutionary algorithm, ROC Curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16594057 EGCL: An Extended G-Code Language with Flow Control, Functions and Mnemonic Variables
Authors: Oscar E. Ruiz, S. Arroyave, J. F. Cardona
Abstract:
In the context of computer numerical control (CNC) and computer aided manufacturing (CAM), the capabilities of programming languages such as symbolic and intuitive programming, program portability and geometrical portfolio have special importance. They allow to save time and to avoid errors during part programming and permit code re-usage. Our updated literature review indicates that the current state of art presents voids in parametric programming, program portability and programming flexibility. In response to this situation, this article presents a compiler implementation for EGCL (Extended G-code Language), a new, enriched CNC programming language which allows the use of descriptive variable names, geometrical functions and flow-control statements (if-then-else, while). Our compiler produces low-level generic, elementary ISO-compliant Gcode, thus allowing for flexibility in the choice of the executing CNC machine and in portability. Our results show that readable variable names and flow control statements allow a simplified and intuitive part programming and permit re-usage of the programs. Future work includes allowing the programmer to define own functions in terms of EGCL, in contrast to the current status of having them as library built-in functions.
Keywords: CNC Programming, Compiler, G-code Language, Numerically Controlled Machine-Tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26224056 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua
Authors: Shervin Khazaeli, Shahab Haj-zamani
Abstract:
Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.Keywords: Contact problems, discrete element method, extended-finite element method, soil-structure interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12364055 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction
Authors: Sudhir Kumar Tiwari
Abstract:
The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.
Keywords: Multi-disciplinary optimization, aircraft load, finite element analysis, Stick Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11304054 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor
Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee
Abstract:
Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.Keywords: Accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18834053 Research of the Behavior of Solar Module Frame Installed by Solar Clamping System by Finite Element Method
Authors: Li-Chung Su, Chia-Yu Chen, Tzu-Yuan Lai, Sheng-Jye Hwang
Abstract:
Mechanical design of the thin-film solar framed module and mounting system is important to enhance module reliability and to increase areas of applications. The stress induced by different mounting positions played a main role controlling the stability of the whole mechanical structure. From the finite element method, under the pressure from the back of module, the stress at Lc (center point of the Long frame) increased and the stresses at Center, Corner and Sc (center point of the Short frame) decreased while the mounting position was away from the center of the module. In addition, not only the stress of the glass but also the stress of the frame decreased. Accordingly it was safer to mount in the position away from the center of the module. The emphasis of designing frame system of the module was on the upper support of the Short frame. Strength of the overall structure and design of the corner were also important due to the complexity of the stress in the Long frame.Keywords: Finite element method, Framed module, Mountingposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17104052 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.
Keywords: CAM, multi-axis milling machining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35814051 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine
Authors: Karin Kandananond
Abstract:
The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30094050 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7424049 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10984048 Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach
Authors: Jamel Khedri, Mohamed Chaabane, Mansour Souissi, Driss Mehdi
Abstract:
This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.Keywords: Feedback controller, Takagi-Sugeno fuzzy model, Linear Matrix Inequality (LMI), PMSM, H∞ performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23354047 Machining Stability of a Milling Machine with Different Preloaded Spindle
Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen
Abstract:
This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the milling machine. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change due to the different preload of spindle bearings. As found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This indicates that the machining stability of a milling machine is affected to vary by the spindle unit when it was assembled with different bearing preload.Keywords: Dynamic compliance, Bearing preload, Machining stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21564046 Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.
Keywords: Fluid structure interaction multi-physics simulations, gas foil bearing, oil-free, transient thermohydrodynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4574045 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear External Forces
Authors: Jaipong Kasemsuwan
Abstract:
This paper presents the finite difference scheme and the numerical simulation of suspended string. The vibration solutions when the various external forces are taken into account are obtained and compared with the solutions without external force. In addition, we also investigate how the external forces and their powers and coefficients affect the amplitude of vibration.
Keywords: Nonlinear external forces, Numerical simulation, Suspended string equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15064044 Study of Hydrophobicity Effect on 220kV Double Tension Insulator String Surface Using Finite Element Method
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Vijaya Haritha
Abstract:
Insulators are one of the most significant equipment in power system. The insulators’ operation may affect the power flow, line loss and reliability. The electrical parameters that influence the performance of insulator are surface leakage current, corona and dry band arcing. Electric field stresses on the insulator surface will degrade the insulating properties and lead to puncture. Electric filed stresses can be analyzed by numerical methods and experimental evaluation. As per economic aspects, evaluation by numerical methods are best. In outdoor insulation, a hydrophobic surface can facilitate to prevent water film formation on the insulation surface, which is decisive for diminishing leakage currents and partial discharge (PD) under heavy polluted environments and harsh weather conditions. Polymer materials like silicone rubber have an outstanding hydrophobic property among general insulation materials. In this paper, electrical field intensity of 220 kV porcelain and polymer double tension insulator strings at critical regions are analyzed and compared by using Finite Element Method. Hydrophobic conditions of polymer insulator with equal and unequal water molecule conditions are verified by using finite element method.
Keywords: Porcelain insulator, polymer insulator, electric field analysis, EFA, finite element method, FEM, hydrophobicity, FEMM-2D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6984043 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition
Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover
Abstract:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.
Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30734042 Finite Element Modeling of two-dimensional Nanoscale Structures with Surface Effects
Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding
Abstract:
Nanomaterials have attracted considerable attention during the last two decades, due to their unusual electrical, mechanical and other physical properties as compared with their bulky counterparts. The mechanical properties of nanostructured materials show strong size dependency, which has been explained within the framework of continuum mechanics by including the effects of surface stress. The size-dependent deformations of two-dimensional nanosized structures with surface effects are investigated in the paper by the finite element method. Truss element is used to evaluate the contribution of surface stress to the total potential energy and the Gurtin and Murdoch surface stress model is implemented with ANSYS through its user programmable features. The proposed approach is used to investigate size-dependent stress concentration around a nanosized circular hole and the size-dependent effective moduli of nanoporous materials. Numerical results are compared with available analytical results to validate the proposed modeling approach.Keywords: Nanomaterials, finite element method, sizedependency, surface stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27824041 Machine Learning Methods for Environmental Monitoring and Flood Protection
Authors: Alexander L. Pyayt, Ilya I. Mokhov, Bernhard Lang, Valeria V. Krzhizhanovskaya, Robert J. Meijer
Abstract:
More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike.Keywords: Early Warning System, intelligent environmentalmonitoring, machine learning, flood protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40844040 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Authors: S. Sowmyayani
Abstract:
The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.
Keywords: Supervised learning, unsupervised learning, regression, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3464039 A New Self-stabilizing Algorithm for Maximal 2-packing
Authors: Zhengnan Shi
Abstract:
In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16684038 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma
Authors: Swarniv Chandra, Basudev Ghosh
Abstract:
Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17264037 Free Vibration Analysis of Conical Helicoidal Rods Having Elliptical Cross Sections Positioned in Different Orientation
Authors: Merve Ermis, Akif Kutlu, Nihal Eratlı, Mehmet H. Omurtag
Abstract:
In this study, the free vibration analysis of conical helicoidal rods with two different elliptically oriented cross sections is investigated and the results are compared by the circular cross-section keeping the net area for all cases equal to each other. Problems are solved by using the mixed finite element formulation. Element matrices based on Timoshenko beam theory are employed. The finite element matrices are derived by directly inserting the analytical expressions (arc length, curvature, and torsion) defining helix geometry into the formulation. Helicoidal rod domain is discretized by a two-noded curvilinear element. Each node of the element has 12 DOFs, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. A parametric study is performed to investigate the influence of elliptical cross sectional geometry and its orientation over the natural frequencies of the conical type helicoidal rod.Keywords: Conical helix, elliptical cross section, finite element, free vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12774036 An H1-Galerkin Mixed Method for the Coupled Burgers Equation
Authors: Xianbiao Jia, Hong Li, Yang Liu, Zhichao Fang
Abstract:
In this paper, an H1-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived.
Keywords: The coupled Burgers equation, H1-Galerkin mixed finite element method, Backward Euler's method, Optimal error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15504035 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.
Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11104034 Finite Element Assessment on Bond Behavior of FRP-to-Concrete Joints under Cyclic Loading
Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi
Abstract:
Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency, and stiffness on the fatigue life of the FRP-toconcrete joints.Keywords: FRP, concrete bond, control, fatigue, finite element model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18984033 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.
Keywords: Big data, bus headway prediction, machine learning, public transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15624032 Private Monetary Rates of Return to Humanities and Education Programs in Public Universities in Osun State, Nigeria
Authors: A. S. Adelokun, O. O. Gambo, A. A. Adegboye
Abstract:
This study estimates the private cost of Humanities and Education programs in public universities in Osun state, Nigeria, as well as the private monetary returns to Humanities and Education programs in public universities in the state. It also estimates the private rates of return to Humanities and Education programmes in public universities in Osun state; with the view of providing information on the relative profitability of investments in Humanities and Education programs in public universities in Osun state. The study adopted a descriptive survey research design. The population for the study consisted of all Humanities and Education students from public universities in Osun State and all Humanities and Education graduates who are workers in Osun state establishments. The sample was made up of 600 students and 120 workers. The students were selected through simple random sampling technique from the two public universities in the state while the workers were purposively selected from Osun state establishments. These workers were graduates of Humanities and Education programs. The selected programs included Bachelor of Arts (B.A.) in English, Bachelor of Education (B.Ed.) in English, B.A. in Religious Studies, B.Ed. in Religious Studies, B.A. in Yoruba and B.Ed. in Yoruba. Two research instruments were used, namely: Private Costs of University Education Questionnaire (PCUEQ) and Age Education Earnings of Workers Questionnaire (AEEWQ). The data were analyzed using compounding and discount cash flow techniques. The results showed that the private costs of Humanities and Education programs in public universities in Osun state were N855,935.59 and N694,269.34 respectively. The private monetary returns to Humanities and Education programs in public universities in the State were N9,052,859.28 and N9,052,859.28, respectively. The private rates of return to Humanities and Education programmes in public universities in Osun state were 27.36% and 34.40% respectively. The study concluded that it was more profitable to invest in Education programs than in Humanities programs at public universities in Osun state, Nigeria.
Keywords: Rates of return, private cost, investment, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4454031 Using the Polynomial Approximation Algorithm in the Algorithm 2 for Manipulator's Control in an Unknown Environment
Authors: Pavel K. Lopatin, Artyom S. Yegorov
Abstract:
The Algorithm 2 for a n-link manipulator movement amidst arbitrary unknown static obstacles for a case when a sensor system supplies information about local neighborhoods of different points in the configuration space is presented. The Algorithm 2 guarantees the reaching of a target position in a finite number of steps. The Algorithm 2 is reduced to a finite number of calls of a subroutine for planning a trajectory in the presence of known forbidden states. The polynomial approximation algorithm which is used as the subroutine is presented. The results of the Algorithm2 implementation are given.
Keywords: Manipulator, trajectory planning, unknown obstacles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239