
 

 

 
Abstract—This paper presents a genetic algorithm based 

permutation and non-permutation scheduling heuristics (GAPNP) to 
solve a multi-stage finite capacity material requirement planning 
(FCMRP) problem in automotive assembly flow shop with unrelated 
parallel machines. In the algorithm, the sequences of orders are 
iteratively improved by the GA characteristics, whereas the required 
operations are scheduled based on the presented permutation and 
non-permutation heuristics. Finally, a linear programming is applied 
to minimize the total cost. The presented GAPNP algorithm is 
evaluated by using real datasets from automotive companies. The 
required parameters for GAPNP are intently tuned to obtain a 
common parameter setting for all case studies. The results show that 
GAPNP significantly outperforms the benchmark algorithm about 
30% on average. 
 

Keywords—Finite capacity MRP, genetic algorithm, linear 
programming, flow shop, unrelated parallel machines, application in 
industries. 

I. INTRODUCTION 

HE FCMRP is developed to remedy a shortcoming of 
material requirement planning (MRP) that assumes 

constant production lead-time. It has become an interesting 
research topic for a few decades as shown in the literature [1]-
[9]. Based on the literature, the metaheuristic algorithm is one 
of the most popular techniques used to solve this problem 
since it obtains a near optimal solution within a practical 
computational time [10]-[14] 

This paper presents a GAPNP for the FCMRP problem. It is 
intently developed to improve the solution obtained from the 
benchmark algorithm by [15]. Our objective is to minimize the 
total cost, which is the sum of tardiness, earliness and flow-
time costs. 

This paper is further organized as follows. Details of the 
GAPNP algorithm are explained in Section II. The 
experiments for evaluating the performance of GAPNP and 
our case studies are explained in Section III. Results and 
discussions are provided in Section IV. The conclusion and 
recommendation of this paper are given in the last section.  

II. THE PROPOSED GAPNP ALGORITHM 

In the proposed GAPNP, each chromosome consists of y 
genes, where y is the number of customer orders. The 
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chromosome is constructed by permutation encoding concept. 
There are 5 main steps of GAPNP as follows: (1) construct 
initial chromosomes (population), (2) evaluate performance of 
each chromosome, (3) selection, (4) apply genetic operators 
(crossover and mutation), and (5) apply the LP model. Note 
that steps 2-4 are repeatedly performed until the stopping 
criterion is satisfied, and finally step 5 is performed to 
minimize the total cost. The overall procedures of GAPNP are 
shown in Fig. 1 and explained follows. 

 

 

Fig. 1 Pseudo code for GAPNP 

A. Construct Initial Population 

The initial population consists of Y chromosomes 
(sequences of orders), where Y is a population size. We 
construct them by random rule and due date-based dispatching 
rules called EDD and MST. The reason for selecting EDD and 
MST is that they obtain favorable results in the benchmark 
algorithm [15].  

B. Evaluate Performance of Each Chromosome 

Each chromosome is evaluated through the total cost 
calculated by (1), where Qi, ti, ei and fi are the order quantity, 
tardiness, earliness and flow-time of the ith order. Ti, Ei and Fi 
are the cost per unit of tardiness, earliness and flow-time of 
the ith order. 

                    

1 1 1
 cos

n n n

i i i i i i i i i
i i i

Total t T Q t E Q e F Q f
  

      (1) 

overall procedure: GAPNP algorithm
input: orders, BOMs and machines information, GAPNP parameters
output: solution from the GAPNP algorithm

begin
n←0; //n: generation number

//Step 1: Construct initial population
create Population(n) consists of Y chromosomes; //Y: population size

while (not terminating condition of GAPNP) do 

//Step 2: Evaluate performance of each chromosome
Each chromosome is evaluated its performance through the total cost

//Step 3: Selection
apply elitist method to Population(n);
select Parent(n) from Population(n) by roulette wheel method;

//Step 4: Apply genetic operators
crossover Parent(n) to get Offspring(n); 
mutate Offspring(n) to get MOffspring(n); //MOffspring: mutated offspring
Population(n+1)←a sequence from elitist method and MOffspring(n);
calculate total cost of Population(n+1);
n←n+1;

end;
select the sequence with minimum total cost from Population(n);

//Step 5: Apply the LP model
apply LP to the sequence from step 4;

output: solution from the GAPNP algorithm
end;
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To calculate the total cost, all operations of orders in the 
sequence must be scheduled to machines in order to calculate 
the tardiness, earliness and flow-time. It can be done by the 
following steps: (1) the orders in the sequence are exploded by 
variable lead-time MRP (VMRP) to obtain details of 
operations, (2) these operations are scheduled to less tardiness 
machines by permutation and non-permutation scheduling 
options, and (3) the tardiness, earliness and flow-time of each 
order are calculated by the start time, due time and completion 
time. Note that the permutation and non-permutation 
schedules are applied separately for the entire steps. 

Details of the required operations of the four orders after 
VMRP explosion shown in Fig. 2 are used to demonstrate this 
step. Suppose that the population size is 3 sequences of orders 
(chromosomes), which are O1  O3  O4  O2 (EDD), O1  
O3  O2  O4 (MST) and O4  O3  O2  O1 (random). 

When the permutation option is selected, all operations must 
be scheduled based on the sequence of orders in a way that the 
operations of the first order in the sequence are scheduled to 
less tardiness machines first, and the operations of the second 
order in the sequence are scheduled next and so on. By this 
way, it is obvious that all machines have the same sequence of 
operations that complies with the permutation sequencing 
concept. When the non-permutation schedule is selected, the 
operations are scheduled without considering the sequence of 
orders. It results in different sequence of operations of each 
machine that complies with the non-permutation sequencing 
concept. The total costs of these sequences are shown in Table 
I. Note that the result of non-permutation concept may be the 
same as that of the permutation concept when there are only a 
few orders in the sequence as shown in our illustration. 
However, it does not happen to our case studies.  

 

 

Fig. 2 Details of operations after applying the VMRP explosion 
 

C. Selection 

There are two selections called elitist and roulette wheel 
methods applied in this step. The elitist method is applied to 
keep the best sequence of orders from each iteration and use it 
as a new chromosome for a new population. On the other 
hand, the roulette wheel method selects the parent sequences 

based on the probability in a way that the sequence with 
higher probability has higher opportunity to be selected than 
the lower one. Note that only the permutation option is used in 
our illustration. 

Based on the permutation schedule in Table I, the sequence 
of orders O1  O3  O4  O2 is selected by the elitist method 

O3,3

p3,3,4 = 7(M4)
p3,3,6 = 9(M6)
Due date = 27
Release date = 19

O3,2

p3,2,3 = 4(M3)
p3,2,4 = 6(M4)
Due date = 19
Release date = 14

O3,1

p3,1,1 = 7(M1)
p3,1,2 = 7(M2)
Due date = 14
Release date = 7

Order O3

Q3 = 14 pcs
T3 = $2.5/pcs/day
E3 = $0.2/pcs/day
F3 = $0.1/pcs/day

O1,4

p1,4,5 = 9(M5)
p1,4,6 = 11(M6)
Due date = 26
Release date = 16

O1,2

p1,2,2 = 6(M2)
p1,2,3 = 6(M3)
Due date = 16
Release date = 10

O1,1

p1,1,2 = 5(M2)
Due date = 10
Release date = 5

Order O1

Q1 = 12 pcs
T1 = $4/pcs/day
E1 = $0.2/pcs/day
F1 = $0.1/pcs/day

O1,3

p1,3,4 = 7(M4)
Due date = 16
Release date = 9

O2,4

p2,4,5 = 8(M5)
p2,4,6 = 8(M6)
Due date = 30
Release date = 22

O2,3

p2,3,5 = 6(M5)
Due date = 22
Release date = 16

O2,1

p2,1,1 = 9(M1)
p2,1,2 = 7(M2)
Due date = 16
Release date = 8

Order O2

Q2 = 10 pcs
T2 = $3/pcs/day
E2 = $0.2/pcs/day
F2 = $0.1/pcs/day

O2,2

p2,2,3 = 4(M3)
p2,2,4 = 4(M4)
Due date = 16
Release date = 12

O4,5

p4,5,5 = 8(M5)
p4,5,6 = 6(M6)
Due date = 29
Release date = 22

O4,3

p4,3,3 = 5(M3)
p4,3,4 = 5(M4)
Due date = 22
Release date = 17

O4,1

p4,1,1 = 5(M1)
p4,1,2 = 7(M2)
Due date = 17
Release date = 11

Order O4

Q4 = 8 pcs
T4 = $2/pcs/day
E4 = $0.1/pcs/day
F4 = $0.05/pcs/day

O4,2

p4,2,3 = 6(M3)
Due date = 18
Release date = 12

O4,4

p4,4,5 = 4(M5)
Due date = 22
Release date = 18
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to be a member of new population because it has the minimum 
total cost. The roulette wheel is applied to select a pair of 
parent sequences for constructing two offspring in next step. 
To calculate the probability for roulette wheel, the inverse 
total cost is first determined and then the probability of each 
sequence is calculated by (2). The probability of each 
sequence and its interval are shown in Table II. Suppose that 
two random numbers are 0.35 and 0.87, the sequences O1  
O3  O4  O2 and O4  O3  O2  O1 are then selected to 
be the parent sequences. 

 

       
  

        


Inverse total cost of sequencei
Probability

Sumof inverse total cost of all sequ
i

ence
 (2) 

D. Apply Genetic Operators 

This step consecutively applies genetic operators called 
crossover and mutation to the parent sequences in order to 
construct the offspring. They are applied based on their 
probability. In this paper, two well-known crossover operators 
called PMX and PBX are applied since they obtain a good 
result for the flow shop scheduling problem [16]. Suppose that 
PMX is selected, the crossover probability (pc) is 0.9, the 
random positions are 2 and 3, and the random number for 
generating the offspring is 0.46. Since the random number is 
less than pc, the crossover process is then allowed and the two 
offspring sequences generated from PMX are O2  O3  O4 

 O1 and O1  O3  O2  O4. These two offspring 
sequences are then sent to the mutation process. 

 
TABLE I 

TOTAL COST OF INITIAL SEQUENCES BASED ON PERMUTATION AND NON-PERMUTATION SCHEDULES 

Initial sequence 
Sequence of operations on 

machines (Permutation) 
Total cost 

(Permutation) 
Sequence of operations on 

machines (Non-permutation) 
Total cost  

(Non-permutation) 

O1  O3  O4  O2  

(EDD) 

M1: O3,1  O4,1 

M2: O1,1  O1,2  O2,1 

M3: O3,2  O4,2  O4,3 

M4: O1,3  O3,3  O2,2 

M5: O1,4  O4,4  O2,3  O2,4 

M6: O4,5 

62.15 

M1: O3,1  O4,1 

M2: O1,1  O1,2  O2,1 

M3: O3,2  O4,2  O4,3 

M4: O1,3  O3,3  O2,2 

M5: O1,4  O4,4  O2,3  O2,4 

M6: O4,5 

62.15 

O1  O3  O2  O4  

(MST) 

M1: O3,1  O2,1 

M2: O1,1  O1,2  O4,1 

M3: O3,2  O2,2  O4,2 

M4: O1,3  O3,3  O4,3 

M5: O1,4  O2,3  O2,4  O4,4 

M6: O4,5 

75.45 

M1: O3,1  O2,1 

M2: O1,1  O1,2  O4,1 

M3: O3,2  O2,2  O4,2 

M4: O1,3  O3,3  O4,3 

M5: O1,4  O2,3  O2,4  O4,4 

M6: O4,5 

75.45 

O4  O3  O2  O1  

(RND) 

M1: O4,1 

M2: O3,1  O2,1  O1,1  O1,2 

M3: O4,2  O3,2  O2,2 

M4: O4,3  O3,3  O1,3 

M5: O4,4  O2,3  O2,4 

M6: O4,5  O1,4 

131.45 

M1: O4,1 

M2: O3,1  O2,1  O1,1  O1,2 

M3: O4,2  O3,2  O2,2 

M4: O1,3  O4,3  O3,3 

M5: O4,4  O2,3  O2,4 

M6: O4,5  O1,4 

115.05 

 
TABLE II 

PROBABILITY FOR ROULETTE WHEEL (PERMUTATION) 

Initial sequence 1/Total cost Probability Cumulative probability Random number interval 

O1  O3  O4  O2 0.016 0.43 0.43 0 - 0.43 

O1  O3  O2  O4 0.013 0.35 0.78 0.43 - 0.78 

O4  O3  O2  O1 0.008 0.22 1.00 0.79 - 1.00 

 
There are two efficient mutation operators for the flow shop 

problem called INSERT and SWAP [16]. Suppose that SWAP 
is selected, the mutation probability (pm) is 0.01, the random 
positions are 2 and 4, and random numbers for offspring 
sequences O2  O3  O4  O1 and O1  O3  O2  O4 are 
0.47 and 0.006, respectively. Since the random number of the 
latter offspring sequence is less than pm, the mutation process 
is then allowed for only this sequence. The sequence after 
mutation is O1  O4  O2  O3. There are three sequences 
obtained after completing this step. The first sequence comes 
from the elitist method, whereas the last two sequences are 
obtained from the genetic operators as shown in Table III. 
These sequences are called a new population. If the stopping 
criterion is still not satisfied, they are sent to step 3 for 
performing the next iteration. Otherwise, the sequence with 
the minimum total cost will be selected and sent to next step. 

 
 

TABLE III 
TOTAL COSTS OF NEW POPULATION (PERMUTATION) 

Method New population Total cost 

Elitist O1  O3  O4  O2 62.15 

Crossover/Mutation O2  O3  O4  O1 98.30 

Crossover/Mutation O1  O4  O2  O3 76.40 

E. Apply the LP Model 

From the last step, the operations are scheduled to machines 
by the heuristics. As a result, the start times of some 
operations may not be optimal. This step tries to determine the 
optimal start times of all operations by the LP model in order 
to minimize the total cost. In our LP model, only the start 
times of operations are optimized, whereas the sequence of 
operations on machines obtained from the last step is still 
maintained. Our LP model is formulated by using indices, 
parameters and variables explained as follows.  
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Indices  

i = index of order starting from 1 to n 
j = index of operation of order i starting from 1 to m 
j* = index of the last operation of order i 
k = index of machine starting from 1 to s 
jꞌ = index of child operations of order i operation j 

q   = index of sequence of operations on machine starting from 1 to t. 
For example, if there are three operations on a machine, when q 
= 2, it refers to the second operation on this machine. 

Sets and Parameters 

pi,j  = processing time of operation i,j  
di  = due time of order i 
CTi = cost per unit of tardiness of order i 
CEi = cost per unit of earliness of order i 
CFi = cost per unit of flow-time of order i 
Qi  = quantity of order i 
Seqk  = set of sequence of operation i,j on machine k. For example, 

if operations O3,1  O4,1 are on machine 1, then Seq1 = 
{(3,1), (4,1)}. 

CHi,j  =  set of child operations belongs to operation i,j. For 
example, if O1,4 consists of O1,2 and O1,3, then CH1,4 = (2, 
3). 

Decision variables 

xi,j =  start time of operation i,j 
ci =  completion time of order i 
fi =  flow-time of order i 
ei = earliness of order i 
ti = tardiness of order i 
Z =  total cost 

Objective Function 

1 1 1
 

n n n

i i i i i i i i i
i i i

Minimize Z CT Q t CE Q e CF Q f
  

      (3) 

Constraints 

1) Constraint to maintain the sequence of operations on each 
machine  

 

 1,k ,
, , , , , and ,  q q k

i j i j i j kx x p k q i j Seq     (4) 

 
2) Constraint to maintain the precedence relationships of 

operations 
 

,, , , ,  and   i ji j i jC Ci j Hjx      (5) 

 
3) Constraints to calculate completion time, tardiness, 

earliness and flow-time 
For completion time: 

 

, *, * , *  i ji i jC p i jx    (6) 

 

,, , ,  i ji j i jC p i jx    (7) 

 
For tardiness: 

 

i i iCt d i    (8) 

 

0  it i   (9) 

For earliness: 
 

 i i ie d c i    (10) 

 

0  ie i   (11) 

 
4) Constraint to maintain the precedence relationships of 

operations 
 

, 0 ,  i jx i j   (12) 

III. CASE STUDIES AND EXPERIMENTS TO EVALUATE 

PERFORMANCE OF GAPNP  

A. Detail of Case Studies 

There are three case studies from real automotive 
companies. They all have the same production shop which is 
the multi-stage flow shop with unrelated parallel machines. 
The planning horizon is one month with 8 hours a day and no 
time extended. There is no order splitting or preempting. 
However, there are some characteristics making our case 
studies different, for example, a number of products, number 
of levels in BOM, number of machines, number of operations 
with parallel machines, and number of machines in the parallel 
stages. The different characteristics are used to prove that 
GAPNP can be implemented to various situations.  

B. Experiments for Evaluating the Performance of GAPNP 

There are six parameters for GAPNP shown in Table IV. 
The details of these parameters are derived from our screening 
experiments. For the parameter tuning experiment, these 
parameters are considered as independent variables for a 
factorial experiment. The response variable is the total cost 
before applying the LP model. For the performance evaluation 
experiment, GAPNP and the benchmark algorithm are 
considered as independent variables for a one-way ANOVA. 
The response variable is the total cost after applying the LP 
model. Both experiments are conducted with five replicates 
for all case studies. The stopping criterion for each run is 2 
hours. 

IV. RESULTS AND DISCUSSIONS 

In this paper, we intent to determine the best common 
parameter setting rather than the best setting for an individual 
case study. To obtain this setting, the relative percentage 
deviation for each case study (RPD) and the average relative 
percentage deviation of all case studies (ARPD) are 
determined by (12) and (13), where SolAlg is the total cost 
obtained from each run, SolBest is the minimum total cost 
across all runs, v is the index of case study, and V is the 
number of case studies. The best common setting is a setting 
obtained at the minimum ARPD, since it guarantees that the 
total cost from this setting is very close to its best total cost.  

 
( (

(

) )

)

x 100%
Alg Best

Best

v v

v

v
Sol Sol

RPD
Sol


  (13) 
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1

1
( )

V

v
v

ARPD RPD
V 

   (14) 

 
Table V shows the best common settings for GAPNP. It can 

be seen that the permutation and non-permutation options 
have different settings. Table VI shows the best total cost and 
near best total of GAPNP. It is obvious that there is only a 
small gap less than 1% between the near best total cost and its 

best total cost. This proves that the best common setting works 
very well. It is also observed that the permutation option 
slightly outperforms the non-permutation option. Fig. 3 shows 
the solution improvement characteristic of GAPNP. It clearly 
shows that the permutation option reaches the steady state 
faster than the non-permutation option. However, both options 
can reach their steady state within 2 hours. 

 
TABLE IV 

PARAMETERS FOR GAPNP 

Algorithm ps Crossover pc Mutation pm Scheduling option 

GA 5, 10 PMX, PBX 0.6, 0.8 SWAP, INSERT 0.005, 0.01 Permutation, Non-permutation 

 
TABLE V 

BEST COMMON PARAMETER SETTINGS FOR ALL CASE STUDIES 

Algorithms ps Crossover pc Mutation pm Min. ARPD 

GA permutation 10 PBX 0.6 SWAP 0.005 0.78% 
GA non-permutation 10 PBX 0.6 INSERT 0.01 0.95% 

 
TABLE VI 

BEST TOTAL COSTS, NEAR BEST TOTAL COSTS, AND RPD BEFORE APPLYING THE LP 

Algorithms 
Best total costs ($)/Near best total costs ($)/RPDTC Min. 

ARPD Case 1 Case 2 Case 3 

GA permutation 8,203 / 8,275 / 0.88% 13,439 / 13,634 / 1.45% 17,836 / 17,836 / 0.00% 0.78% 

GA Non-permutation 8,943 / 9,072 / 1.45% 13,758 / 13,758 / 0.00% 18,501 / 18,760 / 1.40% 0.95% 

 

 

Fig. 3 Solution development characteristics of GAPNP 
 

TABLE VII 
TOTAL COSTS AND RPI AFTER APPLYING LP 

Algorithms 
Total costs ($)/RPI 

Average 
Case 1 Case 2 Case 3 

FCMRP (2014) 9,424 (Benchmark) 16,016 (Benchmark) 19,280 (Benchmark) 14,906.58 (Benchmark) 

GA permutation 7,300 / 22.54% (2) 11,960 / 25.33% (2) 13,707 / 28.91% (2) 10,988.99 / 25.59% (2) 

GA Non-permutation 7,016 / 25.55% (1) 10,265 / 35.91% (1) 12,814 / 33.54% (1) 10,031.70 / 31.66% (1) 

 
Table VII shows the total cost after applying the LP model. 

The numbers in parentheses are the rankings obtained from 
Tukey multiple comparison test. It is obvious that the near best 
total cost in Table VI is substantially improved when the LP 

model is applied. This proves that our LP model works as 
expected. It is observed that the non-permutation option is 
significantly better than the permutation option. To compare 
the total cost between GAPNP and the benchmark algorithm, 

0 30 60 90 120

13,000

20,000

27,000

Computational time (minutes)

T
ot

al
 c

os
t 

($
)

 

 

GA permutation Case 1
GA non-permutation Case 1
GA permutation Case 2
GA non-permutation Case 2
GA permutation Case 3
GA non-permutation Case 3

Case 1

Case 2

Case 3
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the relative percentage improvement (RPI) over the best total 
cost of the benchmark algorithm is applied. It is calculated 
from (14), where SolAlg is the total cost of each algorithm, 
SolBM is the best total cost from the benchmark algorithm. 
Based on the RPI value, it observes that GAPNP improves the 
total cost obtained from the benchmark algorithms in a range 
of 25.59%-31.66%. 

 

x 100%



Alg BM

BM

Sol Sol
RPI

Sol
 (15) 

V. CONCLUSION 

In this study, the genetic algorithm based permutation and 
non-population scheduling heuristics (GAPNP) is presented 
for solving the FCMRP problem. It is intently developed for 
the flow shop with unrelated parallel machines. The objectives 
are to improve the total cost obtained from the benchmark 
algorithm by [15] and to offer a practical alternative approach 
for the planner. Based on our case studies, it proves that 
GAPNP works very well for many industrial situations. The 
total cost obtained from the benchmark algorithm is 
dramatically reduced when the GAPNP algorithm is applied. 

 The GAPNP algorithm has some limitations. The lot sizing 
policy is only lot-for-lot. Other lot-sizing techniques should be 
studied. Since it is especially designed for the flow shop, the 
performance of the proposed algorithm in other manufacturing 
shops such as job shop, open shop should be investigated. The 
production time extended (overtime) and order preemption are 
also of interest because they can significantly reduce the total 
cost. Therefore, a new algorithm should be developed to 
address these problems.  
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