Search results for: Data Grid
7324 Moving Data Mining Tools toward a Business Intelligence System
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17427323 Analysis of Diverse Clustering Tools in Data Mining
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.
Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22017322 A Monte Carlo Method to Data Stream Analysis
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop, Pairote Sattayatham
Abstract:
Data stream analysis is the process of computing various summaries and derived values from large amounts of data which are continuously generated at a rapid rate. The nature of a stream does not allow a revisit on each data element. Furthermore, data processing must be fast to produce timely analysis results. These requirements impose constraints on the design of the algorithms to balance correctness against timely responses. Several techniques have been proposed over the past few years to address these challenges. These techniques can be categorized as either dataoriented or task-oriented. The data-oriented approach analyzes a subset of data or a smaller transformed representation, whereas taskoriented scheme solves the problem directly via approximation techniques. We propose a hybrid approach to tackle the data stream analysis problem. The data stream has been both statistically transformed to a smaller size and computationally approximated its characteristics. We adopt a Monte Carlo method in the approximation step. The data reduction has been performed horizontally and vertically through our EMR sampling method. The proposed method is analyzed by a series of experiments. We apply our algorithm on clustering and classification tasks to evaluate the utility of our approach.Keywords: Data Stream, Monte Carlo, Sampling, DensityEstimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14177321 Improved Data Warehousing: Lessons Learnt from the Systems Approach
Authors: Roelien Goede
Abstract:
Data warehousing success is not high enough. User dissatisfaction and failure to adhere to time frames and budgets are too common. Most traditional information systems practices are rooted in hard systems thinking. Today, the great systems thinkers are forgotten by information systems developers. A data warehouse is still a system and it is worth investigating whether systems thinkers such as Churchman can enhance our practices today. This paper investigates data warehouse development practices from a systems thinking perspective. An empirical investigation is done in order to understand the everyday practices of data warehousing professionals from a systems perspective. The paper presents a model for the application of Churchman-s systems approach in data warehouse development.Keywords: Data warehouse development, Information systemsdevelopment, Interpretive case study, Systems thinking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15957320 Centralized Resource Management for Network Infrastructure Including Ip Telephony by Integrating a Mediator Between the Heterogeneous Data Sources
Authors: Mohammed Fethi Khalfi, Malika Kandouci
Abstract:
Over the past decade, mobile has experienced a revolution that will ultimately change the way we communicate.All these technologies have a common denominator exploitation of computer information systems, but their operation can be tedious because of problems with heterogeneous data sources.To overcome the problems of heterogeneous data sources, we propose to use a technique of adding an extra layer interfacing applications of management or supervision at the different data sources.This layer will be materialized by the implementation of a mediator between different host applications and information systems frequently used hierarchical and relational manner such that the heterogeneity is completely transparent to the VoIP platform.Keywords: TOIP, Data Integration, Mediation, informationcomputer system, heterogeneous data sources
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13327319 Secure Multiparty Computations for Privacy Preserving Classifiers
Authors: M. Sumana, K. S. Hareesha
Abstract:
Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.Keywords: Homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9197318 Design of Buffer Management for Industry to Avoid Sensor Data- Conflicts
Authors: Dae-ho Won, Jong-wook Hong, Yeon-Mo Yang, Jinung An
Abstract:
To reduce accidents in the industry, WSNs(Wireless Sensor networks)- sensor data is used. WSNs- sensor data has the persistence and continuity. therefore, we design and exploit the buffer management system that has the persistence and continuity to avoid and delivery data conflicts. To develop modules, we use the multi buffers and design the buffer management modules that transfer sensor data through the context-aware methods.Keywords: safe management system, buffer management, context-aware, input data stream
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15547317 Security in Resource Constraints Network Light Weight Encryption for Z-MAC
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.
Keywords: Hybrid MAC protocol, data integrity, lightweight encryption, Neighbor based key sharing, Sensor node data processing, Z-MAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5647316 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.
Keywords: Autonomous vehicle, data recording, remote monitoring, controller area network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13517315 Centralized Peak Consumption Smoothing Revisited for Habitat Energy Scheduling
Authors: M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, Q. Morel
Abstract:
Currently, electricity suppliers must predict the consumption of their customers in order to deduce the power they need to produce. It is then important in a first step to optimize household consumptions to obtain more constant curves by limiting peaks in energy consumption. Here centralized real time scheduling is proposed to manage the equipments starting in parallel. The aim is not to exceed a certain limit while optimizing the power consumption across a habitat. The Raspberry Pi is used as a box; this scheduler interacts with the various sensors in 6LoWPAN. At the scale of a single dwelling, household consumption decreases, particularly at times corresponding to the peaks. However, it would be wiser to consider the use of a residential complex so that the result would be more significant. So the ceiling would no longer be fixed. The scheduling would be done on two scales, on the one hand per dwelling, and secondly, at the level of a residential complex.
Keywords: Smart grid, Energy box, Scheduling, Gang Model, Energy consumption, Energy management system, and Wireless Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15867314 Cloud Computing Databases: Latest Trends and Architectural Concepts
Authors: Tarandeep Singh, Parvinder S. Sandhu
Abstract:
The Economic factors are leading to the rise of infrastructures provides software and computing facilities as a service, known as cloud services or cloud computing. Cloud services can provide efficiencies for application providers, both by limiting up-front capital expenses, and by reducing the cost of ownership over time. Such services are made available in a data center, using shared commodity hardware for computation and storage. There is a varied set of cloud services available today, including application services (salesforce.com), storage services (Amazon S3), compute services (Google App Engine, Amazon EC2) and data services (Amazon SimpleDB, Microsoft SQL Server Data Services, Google-s Data store). These services represent a variety of reformations of data management architectures, and more are on the horizon.Keywords: Data Management in Cloud, AWS, EC2, S3, SQS, TQG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19867313 Data Annotation Models and Annotation Query Language
Authors: Neerja Bhatnagar, Benjoe A. Juliano, Renee S. Renner
Abstract:
This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.Keywords: annotation query language, data annotations, data annotation models, semantic data annotations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23557312 Use XML Format like a Model of Data Backup
Authors: Souleymane Oumtanaga, Kadjo Tanon Lambert, Koné Tiémoman, Tety Pierre, Dowa N’sreke Florent
Abstract:
Nowadays data backup format doesn-t cease to appear raising so the anxiety on their accessibility and their perpetuity. XML is one of the most promising formats to guarantee the integrity of data. This article suggests while showing one thing man can do with XML. Indeed XML will help to create a data backup model. The main task will consist in defining an application in JAVA able to convert information of a database in XML format and restore them later.
Keywords: Backup, Proprietary format, parser, syntactic tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17307311 Numerical Simulation of the Flow Field around a Vertical Flat Plate of Infinite Extent
Authors: Marco Raciti Castelli, Paolo Cioppa, Ernesto Benini
Abstract:
This paper presents a CFD analysis of the flow field around a thin flat plate of infinite span inclined at 90° to a fluid stream of infinite extent. Numerical predictions have been compared to experimental measurements, in order to assess the potential of the finite volume code of determining the aerodynamic forces acting on a bluff body invested by a fluid stream of infinite extent. Several turbulence models and spatial node distributions have been tested. Flow field characteristics in the neighborhood of the flat plate have been investigated, allowing the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and the corresponding turbulence model for the prediction of the flow field over a two-dimensional vertical flat plate.Keywords: CFD, vertical flat plate, aerodynamic force
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26307310 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG
Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi
Abstract:
In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.Keywords: Wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7687309 REDUCER – An Architectural Design Pattern for Reducing Large and Noisy Data Sets
Authors: Apkar Salatian
Abstract:
To relieve the burden of reasoning on a point to point basis, in many domains there is a need to reduce large and noisy data sets into trends for qualitative reasoning. In this paper we propose and describe a new architectural design pattern called REDUCER for reducing large and noisy data sets that can be tailored for particular situations. REDUCER consists of 2 consecutive processes: Filter which takes the original data and removes outliers, inconsistencies or noise; and Compression which takes the filtered data and derives trends in the data. In this seminal article we also show how REDUCER has successfully been applied to 3 different case studies.
Keywords: Design Pattern, filtering, compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14907308 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features
Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova
Abstract:
The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.
Keywords: Emotion recognition, facial recognition, signal processing, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20187307 A Numerical Simulation of the Indoor Air Flow
Authors: Karel Frana, Jianshun S. Zhang, Milos Muller
Abstract:
The indoor airflow with a mixed natural/forced convection was numerically calculated using the laminar and turbulent approach. The Boussinesq approximation was considered for a simplification of the mathematical model and calculations. The results obtained, such as mean velocity fields, were successfully compared with experimental PIV flow visualizations. The effect of the distance between the cooled wall and the heat exchanger on the temperature and velocity distributions was calculated. In a room with a simple shape, the computational code OpenFOAM demonstrated an ability to numerically predict flow patterns. Furthermore, numerical techniques, boundary type conditions and the computational grid quality were examined. Calculations using the turbulence model k-omega had a significant effect on the results influencing temperature and velocity distributions.Keywords: natural and forced convections, numerical simulations, indoor airflows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32067306 CFD Simulation the Thermal-Hydraulic Characteristic within Fuel Rod Bundle near Grid Spacers
Authors: David Lávicka
Abstract:
This paper looks into detailed investigation of thermal-hydraulic characteristics of the flow field in a fuel rod model, especially near the spacer. The area investigate represents a source of information on the velocity flow field, vortex, and on the amount of heat transfer into the coolant all of which are critical for the design and improvement of the fuel rod in nuclear power plants. The flow field investigation uses three-dimensional Computational Fluid Dynamics (CFD) with the Reynolds stresses turbulence model (RSM). The fuel rod model incorporates a vertical annular channel where three different shapes of spacers are used; each spacer shape is addressed individually. These spacers are mutually compared in consideration of heat transfer capabilities between the coolant and the fuel rod model. The results are complemented with the calculated heat transfer coefficient in the location of the spacer and along the stainless-steel pipe.Keywords: CFD, fuel rod model, heat transfer, spacer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17737305 Soil Resistivity Cut off Value and Concrete Pole Deployments in HV Transmission Mains
Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial
Abstract:
The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Concrete poles are widely used within HV transmission mains; many retired transmission mains with timber poles are being replaced with concrete ones, green transmission mains are deploying concrete poles. The earthing arrangement of the concrete poles could have an impact on the earth grid impedance also on the input impedance of the system from the fault point of view. This paper endeavors to provide information on the soil resistivity of the area and the deployments of concrete poles. It introduce the cut off soil resistivity value ρSC, this value aid in determine the impact of deploying the concrete poles on the earthing system. Multiple cases were discussed in this paper.
Keywords: Soil Resistivity, HV Transmission Mains, Earthing, Safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25297304 Analysis of Data Gathering Schemes for Layered Sensor Networks with Multihop Polling
Authors: Bhed Bahadur Bista, Danda B. Rawat
Abstract:
In this paper, we investigate multihop polling and data gathering schemes in layered sensor networks in order to extend the life time of the networks. A network consists of three layers. The lowest layer contains sensors. The middle layer contains so called super nodes with higher computational power, energy supply and longer transmission range than sensor nodes. The top layer contains a sink node. A node in each layer controls a number of nodes in lower layer by polling mechanism to gather data. We will present four types of data gathering schemes: intermediate nodes do not queue data packet, queue single packet, queue multiple packets and aggregate data, to see which data gathering scheme is more energy efficient for multihop polling in layered sensor networks.
Keywords: layered sensor network, polling, data gatheringschemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15687303 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure
Authors: S.Aranganayagi, K.Thangavel
Abstract:
Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.Keywords: Clustering, Categorical, Incremental, Frequency, Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18207302 Numerical Simulation of Fluid Structure Interaction Using Two-Way Method
Authors: Samira Laidaoui, Mohammed Djermane, Nazihe Terfaya
Abstract:
The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.
Keywords: ALE, coupling, FEM, fluid-structure interaction, one-way method, two-way method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15127301 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan
Abstract:
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.Keywords: Data fusion, Dempster-Shafer theory, data mining, event detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17997300 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad Javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.
Keywords: Frequency response, Order of model reduction, frequency matching condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20587299 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.
Keywords: Predictive maintenance, machine learning, big data, cloud, on premise SQL, R.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19207298 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network
Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna
Abstract:
This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.
Keywords: Optimization, distributed generation, integration, slime mould algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6437297 An Unstructured Finite-volume Technique for Shallow-water Flows with Wetting and Drying Fronts
Authors: Rajendra K. Ray, Kim Dan Nguyen
Abstract:
An unstructured finite volume numerical model is presented here for simulating shallow-water flows with wetting and drying fronts. The model is based on the Green-s theorem in combination with Chorin-s projection method. A 2nd-order upwind scheme coupled with a Least Square technique is used to handle convection terms. An Wetting and drying treatment is used in the present model to ensures the total mass conservation. To test it-s capacity and reliability, the present model is used to solve the Parabolic Bowl problem. We compare our numerical solutions with the corresponding analytical and existing standard numerical results. Excellent agreements are found in all the cases.Keywords: Finite volume method, Projection method, Shallow water, Unstructured grid, wetting/drying fronts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15977296 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.
Keywords: Big Data, Next Generation Networks, Network Transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25167295 Using Perspective Schemata to Model the ETL Process
Authors: Valeria M. Pequeno, Joao Carlos G. M. Pires
Abstract:
Data Warehouses (DWs) are repositories which contain the unified history of an enterprise for decision support. The data must be Extracted from information sources, Transformed and integrated to be Loaded (ETL) into the DW, using ETL tools. These tools focus on data movement, where the models are only used as a means to this aim. Under a conceptual viewpoint, the authors want to innovate the ETL process in two ways: 1) to make clear compatibility between models in a declarative fashion, using correspondence assertions and 2) to identify the instances of different sources that represent the same entity in the real-world. This paper presents the overview of the proposed framework to model the ETL process, which is based on the use of a reference model and perspective schemata. This approach provides the designer with a better understanding of the semantic associated with the ETL process.
Keywords: conceptual data model, correspondence assertions, data warehouse, data integration, ETL process, object relational database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511