Search results for: strategic supplier selection
973 Zero Inflated Models for Overdispersed Count Data
Authors: Y. N. Phang, E. F. Loh
Abstract:
The zero inflated models are usually used in modeling count data with excess zeros where the existence of the excess zeros could be structural zeros or zeros which occur by chance. These type of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences which involve sex and health dental epidemiology. The most popular zero inflated models used by many researchers are zero inflated Poisson and zero inflated negative binomial models. In addition, zero inflated generalized Poisson and zero inflated double Poisson models are also discussed and found in some literature. Recently zero inflated inverse trinomial model and zero inflated strict arcsine models are advocated and proven to serve as alternative models in modeling overdispersed count data caused by excessive zeros and unobserved heterogeneity. The purpose of this paper is to review some related literature and provide a variety of examples from different disciplines in the application of zero inflated models. Different model selection methods used in model comparison are discussed.
Keywords: Overdispersed count data, model selection methods, likelihood ratio, AIC, BIC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4532972 Asset Management for Educational Buildings in Egypt
Authors: M. Abdelhamid, I. Beshara, M. Ghoneim
Abstract:
In Egypt, the concept of Asset Management (AM) is new; however, the need for applying it has become crucial because deteriorating or losing an asset is unaffordable in a developing country like Egypt. Therefore the current study focuses on educational buildings as one of the most important assets regarding planning, building, operating and maintenance expenditures. The main objective of this study is to develop a SAMF for educational buildings in Egypt. The General Authority for Educational Buildings (GAEB) was chosen as a case study of the current research as it represents the biggest governmental organization responsible for planning, operating and maintaining schools in Egypt. To achieve the research objective, structured interviews were conducted with senior managers of GAEB using a pre designed questionnaire to explore the current practice of AM. Gab analysis technique was applied against best practices compounded from a vast literature review to identify gaps between current practices and the desired one. The previous steps mainly revealed; limited knowledge about strategic asset management, no clear goals, no training, no real risk plan and lack of data, technical and financial resources. Based on the findings, a SAMF for GAEB was introduced and Framework implementation steps and assessment techniques were explained in detail.Keywords: Strategic Asset Management, Educational Building, Framework, Gab Analysis, Developing Country.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334971 The Modulation of Self-interest Instruction on the Fair-Proposing Behavior in Ultimatum Game
Authors: N. S. Yen, T. H. Yang, W. H. Huang, Y. F. Fang, H. W. Cho
Abstract:
Ultimatum game is an experimental paradigm to study human decision making. There are two players, a proposer and a responder, to split a fixed amount of money. According to the traditional economic theory on ultimatum game, proposer should propose the selfish offers to responder as much as possible to maximize proposer’s own outcomes. However, most evidences had showed that people chose more fair offers, hence two hypotheses – fairness favoring and strategic concern were proposed. In current study, we induced the motivation in participants to be either selfish or altruistic, and manipulated the task variables, the stake sizes (NT$100, 1000, 10000) and the share sizes (the 40%, 30%, 20%, 10% of the sum as selfish offers, and the 60%, 70%, 80%, 90% of the sum as altruistic offers), to examine the two hypotheses. The results showed that most proposers chose more fair offers with longer reaction times (RTs) no matter in choosing between the fair and selfish offers, or between the fair and altruistic offers. However, the proposers received explicit self-interest instruction chose more selfish offers accompanied with longer RTs in choosing between the fair and selfish offers. Therefore, the results supported the strategic concern hypothesis that previous proposers choosing the fair offers might be resulted from the fear of rejection by responders. Proposers would become more self-interest if the fear of being rejected is eliminated.Keywords: Ultimatum game, self-interest, altruistic, fear of rejection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865970 A Quantitative Approach to Strategic Design of Component-Based Business Process Models
Authors: Eakong Atiptamvaree, Twittie Senivongse
Abstract:
A new paradigm for software design and development models software by its business process, translates the model into a process execution language, and has it run by a supporting execution engine. This process-oriented paradigm promotes modeling of software by less technical users or business analysts as well as rapid development. Since business process models may be shared by different organizations and sometimes even by different business domains, it is interesting to apply a technique used in traditional software component technology to design reusable business processes. This paper discusses an approach to apply a technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses with an aim that the process components can be reusable in different process-based software models. The approach is quantitative because the quality of process component design is measured from technical features of the process components. The approach is also strategic because the measured quality is determined against business-oriented component management goals. A software tool has been developed to measure how good a process component design is, according to the required managerial goals and comparing to other designs. We also discuss how we benefit from reusable process components.
Keywords: Business process model, process component, component management goals, measurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676969 Constructing a New World Order through a Narrative of Infrastructural Development: The Case of the BRICS
Authors: Carolijn Van Noort
Abstract:
The aim of this research is to understand how the emerging power bloc BRICS employs infrastructure development narratives to construct a new world order. BRICS is an international body consisting of five emerging countries that collaborate on economic and political issues: Brazil, Russia, India, China, and South Africa. This study explores the projection of infrastructure development narratives through an analysis of BRICS’ attention to infrastructure investment and financing, its support of the New Partnership on African Development and the establishment of the New Development Bank in Shanghai. The theory of Strategic Narratives is used to explore BRICS’ commitment to infrastructure development and to distinguish three layers: system narratives (BRICS as a global actor to propose development reform), identity narratives (BRICS as a collective identity joining efforts to act upon development aspirations) and issue narratives (BRICS committed to a range of issues of which infrastructure development is prominent). The methodology that is employed is a narrative analysis of BRICS’ official documents, media statements, and website imagery. A comparison of these narratives illuminates tensions at the three layers and among the five member states. Identifying tensions among development infrastructure narratives provides an indication of how policymaking for infrastructure development could be improved. Subsequently, it advances BRICS’ ability to act as a global actor to construct a new world order.Keywords: BRICS, emerging powers, infrastructural development, strategic narratives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059968 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait
Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh
Abstract:
In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.Keywords: GPS based household surveys, transportation infrastructure, origin-destination trip matrices, traffic forecasts, transportation demand modeling, travel behavior patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707967 A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem
Authors: Cha-Hwa Lin, Je-Wei Hu
Abstract:
The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).Keywords: Traveling salesman problem, hybrid geneticalgorithm, priority selection, 2-OPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560966 A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN
Authors: Li-Yeh Chuang, Yu-Jen Hou, Jr., Cheng-Hong Yang
Abstract:
Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.
Keywords: Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771965 3A Distributed Method Algorithm for Exact Side Load Managing Smart Grid Using LABVIEW
Authors: N. Ravi Kumar, R. Kamalakannan
Abstract:
The advancement of hybrid energy resources such as solar and wind power leading to the emergence of customer owned grid. It provides an opportunity to regulars to obtain low energy costs as well as enabling the power supplier to regulate the utility grid. There is a need to develop smart systems that will automatically submit energy demand schedule and monitors energy price signals in real-time without the prompt of customers. In this paper, a demand side energy management for a grid connected household and also smart preparation of electrical appliance have been presented. It also reduces electricity bill for the consumers in the grid. In addition to this, when production is high, the surplus energy fashioned in the customer owned grid is given to main grid or neighboring micro grids. The simulation of the entire system is presented using LabVIEW software.
Keywords: Distributed renewable energy resource, power storage devices, scheduling, smart meters, smart micro grid, electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093964 Network Coding-based ARQ scheme with Overlapping Selection for Resource Limited Multicast/Broadcast Services
Authors: Jung-Hyun Kim, Jihyung Kim, Kwangjae Lim, Dong Seung Kwon
Abstract:
Network coding has recently attracted attention as an efficient technique in multicast/broadcast services. The problem of finding the optimal network coding mechanism maximizing the bandwidth efficiency is hard to solve and hard to approximate. Lots of network coding-based schemes have been suggested in the literature to improve the bandwidth efficiency, especially network coding-based automatic repeat request (NCARQ) schemes. However, existing schemes have several limitations which cause the performance degradation in resource limited systems. To improve the performance in resource limited systems, we propose NCARQ with overlapping selection (OS-NCARQ) scheme. The advantages of OS-NCARQ scheme over the traditional ARQ scheme and existing NCARQ schemes are shown through the analysis and simulations.
Keywords: ARQ, Network coding, Multicast/Broadcast services, Packet-based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510963 Limitations of the Analytic Hierarchy Process Technique with Respect to Geographically Distributed Stakeholders
Authors: Azeem Ahmad, Magnus Goransson, Aamir Shahzad
Abstract:
The selection of appropriate requirements for product releases can make a big difference in a product success. The selection of requirements is done by different requirements prioritization techniques. These techniques are based on pre-defined and systematic steps to calculate the requirements relative weight. Prioritization is complicated by new development settings, shifting from traditional co-located development to geographically distributed development. Stakeholders, connected to a project, are distributed all over the world. These geographically distributions of stakeholders make it hard to prioritize requirements as each stakeholder have their own perception and expectations of the requirements in a software project. This paper discusses limitations of the Analytical Hierarchy Process with respect to geographically distributed stakeholders- (GDS) prioritization of requirements. This paper also provides a solution, in the form of a modified AHP, in order to prioritize requirements for GDS. We will conduct two experiments in this paper and will analyze the results in order to discuss AHP limitations with respect to GDS. The modified AHP variant is also validated in this paper.Keywords: Requirements Prioritization, GeographicallyDistributed Stakeholders, AHP, Modified AHP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864962 Genetic Content-Based MP3 Audio Watermarking in MDCT Domain
Authors: N. Moghadam, H. Sadeghi
Abstract:
In this paper a novel scheme for watermarking digital audio during its compression to MPEG-1 Layer III format is proposed. For this purpose we slightly modify some of the selected MDCT coefficients, which are used during MPEG audio compression procedure. Due to the possibility of modifying different MDCT coefficients, there will be different choices for embedding the watermark into audio data, considering robustness and transparency factors. Our proposed method uses a genetic algorithm to select the best coefficients to embed the watermark. This genetic selection is done according to the parameters that are extracted from the perceptual content of the audio to optimize the robustness and transparency of the watermark. On the other hand the watermark security is increased due to the random nature of the genetic selection. The information of the selected MDCT coefficients that carry the watermark bits, are saves in a database for future extraction of the watermark. The proposed method is suitable for online MP3 stores to pursue illegal copies of musical artworks. Experimental results show that the detection ratio of the watermarks at the bitrate of 128kbps remains above 90% while the inaudibility of the watermark is preserved.Keywords: Content-Based Audio Watermarking, Genetic AudioWatermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517961 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge
Authors: M. F. Yilmaz, B. Ö. Çağlayan
Abstract:
Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.
Keywords: Railway bridges, earthquake performance, fragility analyses, selection of intensity measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902960 Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis
Authors: Holger Keitel
Abstract:
The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.
Keywords: Concrete creep models, time-integration methods, sensitivity analysis, prediction uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538959 Operational Guidelines for Six-Sigma Implementation: Survey of Indian Medium Scale Automotive Industries
Authors: Rajeshkumar U. Sambhe
Abstract:
Large scale Indian manufacturers started implementing Six Sigma to their supply core to fulfill the endless need of high quality products. As well, they initiated encouraging their suppliers to apply the well-ascertain SS management practice and kept no resource for supplier enterprises, generally small midsized enterprises to think for the admittance of Six Sigma as a quality promotion drive. There are many issues to study for requisite changes before the introduction of Six Sigma in auto SMEs. This paper converges on impeding factors while implementing SS drive and also pinpoints the gains achieved through successful implementation. The result of this study suggest some operational guidelines for effective implementation of Six Sigma from evidences acquired through research questionnaire and interviews with industrial professionals, apportioned to assort auto sector mid-sized enterprises (MSEs) in India.Keywords: Indian automotive SMEs, quality management practices, six sigma imperatives, problems faced in six sigma implementation, benefits, some guidelines for implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469958 Secure Resource Selection in Computational Grid Based on Quantitative Execution Trust
Authors: G.Kavitha, V.Sankaranarayanan
Abstract:
Grid computing provides a virtual framework for controlled sharing of resources across institutional boundaries. Recently, trust has been recognised as an important factor for selection of optimal resources in a grid. We introduce a new method that provides a quantitative trust value, based on the past interactions and present environment characteristics. This quantitative trust value is used to select a suitable resource for a job and eliminates run time failures arising from incompatible user-resource pairs. The proposed work will act as a tool to calculate the trust values of the various components of the grid and there by improves the success rate of the jobs submitted to the resource on the grid. The access to a resource not only depend on the identity and behaviour of the resource but also upon its context of transaction, time of transaction, connectivity bandwidth, availability of the resource and load on the resource. The quality of the recommender is also evaluated based on the accuracy of the feedback provided about a resource. The jobs are submitted for execution to the selected resource after finding the overall trust value of the resource. The overall trust value is computed with respect to the subjective and objective parameters.Keywords: access control, feedback, grid computing, reputation, security, trust, trust parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488957 Mining Image Features in an Automatic Two-Dimensional Shape Recognition System
Authors: R. A. Salam, M.A. Rodrigues
Abstract:
The number of features required to represent an image can be very huge. Using all available features to recognize objects can suffer from curse dimensionality. Feature selection and extraction is the pre-processing step of image mining. Main issues in analyzing images is the effective identification of features and another one is extracting them. The mining problem that has been focused is the grouping of features for different shapes. Experiments have been conducted by using shape outline as the features. Shape outline readings are put through normalization and dimensionality reduction process using an eigenvector based method to produce a new set of readings. After this pre-processing step data will be grouped through their shapes. Through statistical analysis, these readings together with peak measures a robust classification and recognition process is achieved. Tests showed that the suggested methods are able to automatically recognize objects through their shapes. Finally, experiments also demonstrate the system invariance to rotation, translation, scale, reflection and to a small degree of distortion.Keywords: Image mining, feature selection, shape recognition, peak measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458956 Pharmacology Applied Learning Program in Preclinical Years – Student Perspectives
Authors: Amudha Kadirvelu, Sunil Gurtu, Sivalal Sadasivan
Abstract:
Pharmacology curriculum plays an integral role in medical education. Learning pharmacology to choose and prescribe drugs is a major challenge encountered by students. We developed pharmacology applied learning activities for first year medical students that included realistic clinical situations with escalating complications which required the students to analyze the situation and think critically to choose a safe drug. Tutor feedback was provided at the end of session. Evaluation was done to assess the students- level of interest and usefulness of the sessions in rational selection of drugs. Majority (98 %) of the students agreed that the session was an extremely useful learning exercise and agreed that similar sessions would help in rational selection of drugs. Applied learning sessions in the early years of medical program may promote deep learning and bridge the gap between pharmacology theory and clinical practice. Besides, it may also enhance safe prescribing skills.Keywords: Medical education, pharmacology curriculum, applied learning, safe prescribing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191955 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel
Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian
Abstract:
A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841954 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem
Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar
Abstract:
In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.
Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699953 Unmanned Combat Aircraft Selection using Fuzzy Proximity Measure Method in Multiple Criteria Group Decision Making
Authors: C. Ardil
Abstract:
The decision to select an unmanned combat aircraft is complicated since several options and conflicting criteria must be considered at simultaneously. When making multiple criteria decision, it is important to consider the selected evaluation criteria, including priceability, payloadability, stealthability, speedability , and survivability. The fundamental goal of the study is to select the best unmanned combat aircraft by taking these evaluation criteria into account. The optimal aircraft was chosen using the fuzzy proximity measure method, which enables decision-makers to designate preferences as standard fuzzy set numbers during the multiple criteria decision-making process. To assess the applicability of the proposed approach, a numerical example is provided. Finally, by comparing determined unmanned combat aircraft, the proposed method produced a successful application, and the best aircraft was selected.
Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), multiple criteria group decision making (MCGDM), proximity measure method (PMM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434952 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.
Keywords: Bioassay, machine learning, preprocessing, virtual screen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981951 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708950 Slovenian Text-to-Speech Synthesis for Speech User Interfaces
Authors: Jerneja Žganec Gros, Aleš Mihelič, Nikola Pavešić, Mario Žganec, Stanislav Gruden
Abstract:
The paper presents the design concept of a unitselection text-to-speech synthesis system for the Slovenian language. Due to its modular and upgradable architecture, the system can be used in a variety of speech user interface applications, ranging from server carrier-grade voice portal applications, desktop user interfaces to specialized embedded devices. Since memory and processing power requirements are important factors for a possible implementation in embedded devices, lexica and speech corpora need to be reduced. We describe a simple and efficient implementation of a greedy subset selection algorithm that extracts a compact subset of high coverage text sentences. The experiment on a reference text corpus showed that the subset selection algorithm produced a compact sentence subset with a small redundancy. The adequacy of the spoken output was evaluated by several subjective tests as they are recommended by the International Telecommunication Union ITU.Keywords: text-to-speech synthesis, prosody modeling, speech user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457949 Strategic Regional Identity for Health and Wellness Lodging
Authors: Pongsiri K.
Abstract:
This research aimed to study the competency of health and wellness hotels and resorts in developing use the local natural resources and wisdom to conform to the national health and wellness tourism (HWT) strategy by comparing two independent samples, from Aumpur Muang, Ranong province and Aumpur Muang, Chiangmai province. And also study in the suggestive direct path to lead the organization to the sustainable successful. This research was conduct by using mix methodology; both quantitative and qualitative data were used. The data of competency of health and wellness hotels and resorts (HWHR) in developing use the local natural resources for HWT promoting were collected via 300 set of questionnaires, from 6 hotels and resorts in 2 areas, 3 places from Aumpur Muang, Ranong province and another 3 from Aumpur Muang, Chiangmai province. Thestudy of HWHR’s competency in developing use the local natural resources and wisdom to conform to the national HWT strategycan be divided into fourmain areas, food and beverages service, tourism activity, environmental service, and value adding. The total competency of the Chiangmai sample is importantly scoredp. value 0.01 higher than the Ranong one while the area of safety, Chiangmai’s competency is importantly scored 0.05 higher than the Ranong’scompetency. Others were rated not differently. Since Chiangmai perform better, then it can be a role model in developing HTHR or HWT destination. From the part of qualitative research, content analysis of business contents and its environments were analyzed. The four stages of strategic development and plans, from the smallest scale to the largest scale such a national base were discussed. The HWT: Evolution model and strategy for lodging Business were suggested. All those stages must work harmoniously together. The distinctive result illustrates the need of human resource development as the key point to create the identity of Thainess on Health and wellness service providing. This will add-on the value of services and differentiates ourselves from other competitors. The creative of Thailand’s health and wellness brand possibly increase loyalty customers which agreed to be a path of sustainable development.
Keywords: Health and Wellness Tourism (HWT), Strategic Analysis, Health and Wellness Hotels and Resorts (HWHR), Lodging Firms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773948 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4524947 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199946 Visual Attention Analysis on Mutated Brand Name using Eye-Tracking: A Case Study
Authors: Anirban Chowdhury, Sougata Karmakar, Swathi Matta Reddy, Sanjog J., Subrata Ghosh, Debkumar Chakrabarti
Abstract:
Brand name plays a vital role for in-shop buying behavior of consumers and mutated brand name may affect the selling of leading branded products. In Indian market, there are many products with mutated brand names which are either orthographically or phonologically similar. Due to presence of such products, Indian consumers very often fall under confusion when buying some regularly used stuff. Authors of the present paper have attempted to demonstrate relationship between less attention and false recognition of mutated brand names during a product selection process. To achieve this goal, visual attention study was conducted on 15 male college students using eye-tracker against a mutated brand name and errors in recognition were noted using questionnaire. Statistical analysis of the acquired data revealed that there was more false recognition of mutated brand name when less attention was paid during selection of favorite product. Moreover, it was perceived that eye tracking is an effective tool for analyzing false recognition of brand name mutation.Keywords: Brand Name Mutation, Consumer Behavior, Visual Attention, Orthography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535945 Thread Lift: Classification, Technique, and How to Approach to the Patient
Authors: Panprapa Yongtrakul, Punyaphat Sirithanabadeekul, Pakjira Siriphan
Abstract:
Background: The thread lift technique has become popular because it is less invasive, requires a shorter operation, less downtime, and results in fewer postoperative complications. The advantage of the technique is that the thread can be inserted under the skin without the need for long incisions. Currently, there are a lot of thread lift techniques with respect to the specific types of thread used on specific areas, such as the mid-face, lower face, or neck area. Objective: To review the thread lift technique for specific areas according to type of thread, patient selection, and how to match the most appropriate to the patient. Materials and Methods: A literature review technique was conducted by searching PubMed and MEDLINE, then compiled and summarized. Result: We have divided our protocols into two sections: Protocols for short suture, and protocols for long suture techniques. We also created 3D pictures for each technique to enhance understanding and application in a clinical setting. Conclusion: There are advantages and disadvantages to short suture and long suture techniques. The best outcome for each patient depends on appropriate patient selection and determining the most suitable technique for the defect and area of patient concern.
Keywords: Thread lift, thread lift method, thread lift technique, thread lift procedure, threading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10219944 A Framework for Identifying the Critical Factors Affecting the Decision to Adopt and Use Inter-Organizational Information Systems
Authors: K. Bouchbout, Z. Alimazighi
Abstract:
The importance of inter-organizational system (IOS) has been increasingly recognized by organizations. However, IOS adoption has proved to be difficult and, at this stage, why this is so is not fully uncovered. In practice, benefits have often remained concentrated, primarily accruing to the dominant party, resulting in low rates of adoption and usage, and often culminating in the failure of the IOS. The main research question is why organizations initiate or join IOS and what factors influence their adoption and use levels. This paper reviews the literature on IOS adoption and proposes a theoretical framework in order to identify the critical factors to capture a complete picture of IOS adoption. With our proposed critical factors, we are able to investigate their relative contributions to IOS adoption decisions. We obtain findings that suggested that there are five groups of factors that significantly affect the adoption and use decision of IOS in the Supply Chain Management (SCM) context: 1) interorganizational context, 2) organizational context, 3) technological context, 4) perceived costs, and 5) perceived benefits.Keywords: Business-to-Business relationships, buyer-supplier relationships, Critical factors, Interorganizational Information Systems, IOS adoption and use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048