Search results for: lumped parameter method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8829

Search results for: lumped parameter method

8379 Morphology of Parts of the Middle Benue Trough of Nigeria from Spectral Analysis of Aeromagnetic Data (Akiri Sheet 232 and Lafia Sheet 231)

Authors: B. S. Jatau, Nandom Abu

Abstract:

Structural interpretation of aeromagnetic data and Landsat imagery over the Middle Benue Trough was carried out to determine the depth to basement, delineate the basement morphology and relief, and the structural features within the basin. The aeromagnetic and Landsat data were subjected to various image and data enhancement and transformation routines. Results of the study revealed lineaments with trend directions in the N-S, NE-SW, NWSE and E-W directions, with the NE-SW trends been dominant. The depths to basement within the trough were established to be at 1.8, 0.3 and 0.8km, as shown from the spectral analysis plot. The Source Parameter Imaging (SPI) plot generated showed the centralsouth/ eastern portion of the study area as being deeper in contrast to the western-south-west portion. The basement morphology of the trough was interpreted as having parallel sets of micro-basins which could be considered as grabens and horsts in agreement with the general features interpreted by early workers.

Keywords: Morphology, Middle Benue Trough, Spectral Analysis, Source Parameter Imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4066
8378 Modeling and Design of MPPT Controller Using Stepped P&O Algorithm in Solar Photovoltaic System

Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan

Abstract:

This paper presents modeling and simulation of Grid Connected Photovoltaic (PV) system by using improved mathematical model. The model is used to study different parameter variations and effects on the PV array including operating temperature and solar irradiation level. In this paper stepped P&O algorithm is proposed for MPPT control. This algorithm will identify the suitable duty ratio in which the DC-DC converter should be operated to maximize the power output. Photo voltaic array with proposed stepped P&O-MPPT controller can operate in the maximum power point for the whole range of solar data (irradiance and temperature).

Keywords: Photovoltaic (PV), Maximum Power Point Tracking (MPPT), Boost converter, Stepped Perturb & Observe method (Stepped P&O).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4011
8377 Color Image Segmentation using Adaptive Spatial Gaussian Mixture Model

Authors: M.Sujaritha, S. Annadurai

Abstract:

An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous region and diminish the edge-blurring effect and hence the name adaptive spatial finite mixture model. The proposed approach is compared with the spatially variant finite mixture model for pixel labeling. The experimental results with synthetic and Berkeley dataset demonstrate that the proposed method is effective in improving the segmentation and it can be employed in different practical image content understanding applications.

Keywords: Adaptive; Spatial, Mixture model, Segmentation, Color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
8376 New Newton's Method with Third-order Convergence for Solving Nonlinear Equations

Authors: Osama Yusuf Ababneh

Abstract:

For the last years, the variants of the Newton-s method with cubic convergence have become popular iterative methods to find approximate solutions to the roots of non-linear equations. These methods both enjoy cubic convergence at simple roots and do not require the evaluation of second order derivatives. In this paper, we present a new Newton-s method based on contra harmonic mean with cubically convergent. Numerical examples show that the new method can compete with the classical Newton's method.

Keywords: Third-order convergence, non-linear equations, root finding, iterative method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2964
8375 Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures

Authors: R. O. Ocaya, J. J. Terblans

Abstract:

The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

Keywords: C-language, molecular dynamics, simulation, embedded atom method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
8374 Denosing ECG using Translation Invariant Multiwavelet

Authors: Jeong Yup Han, Su Kyung Lee, Hong Bae Park

Abstract:

In this paper, we propose a method to reduce the various kinds of noise while gathering and recording the electrocardiogram (ECG) signal. Because of the defects of former method in the noise elimination of ECG signal, we use translation invariant (TI) multiwavelet denoising method to the noise elimination. The advantage of the proposed method is that it may not only remain the geometrical characteristics of the original ECG signal and keep the amplitudes of various ECG waveforms efficiently, but also suppress impulsive noise to some extent. The simulation results indicate that the proposed method are better than former removing noise method in aspects of remaining geometrical characteristics of ECG signal and the signal-to-noise ratio (SNR).

Keywords: ECG, TI multiwavelet, denoise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
8373 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: Balanced realization, controllability Grammian, electromechanical oscillations, FACTS, Hankel singular values, observability Grammian, POD, PSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
8372 A Study on the Condition Monitoring of Transmission Line by On-line Circuit Parameter Measurement

Authors: Il Dong Kim, Jin Rak Lee, Young Jun Ko, Young Taek Jin

Abstract:

An on-line condition monitoring method for transmission line is proposed using electrical circuit theory and IT technology in this paper. It is reasonable that the circuit parameters such as resistance (R), inductance (L), conductance (g) and capacitance (C) of a transmission line expose the electrical conditions and physical state of the line. Those parameters can be calculated from the linear equation composed of voltages and currents measured by synchro-phasor measurement technique at both end of the line. A set of linear voltage drop equations containing four terminal constants (A, B ,C ,D ) are mathematical models of the transmission line circuits. At least two sets of those linear equations are established from different operation condition of the line, they may mathematically yield those circuit parameters of the line. The conditions of line connectivity including state of connecting parts or contacting parts of the switching device may be monitored by resistance variations during operation. The insulation conditions of the line can be monitored by conductance (g) and capacitance(C) measurements. Together with other condition monitoring devices such as partial discharge, sensors and visual sensing device etc.,they may give useful information to monitor out any incipient symptoms of faults. The prototype of hardware system has been developed and tested through laboratory level simulated transmission lines. The test has shown enough evident to put the proposed method to practical uses.

Keywords: Transmission Line, Condition Monitoring, Circuit Parameters, Synchro- phasor Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198
8371 Direct Method for Converting FIR Filter with Low Nonzero Tap into IIR Filter

Authors: Jeong Hye Moon, Byung Hoon Kang, PooGyeon Park

Abstract:

In this paper, we proposed the direct method for converting Finite-Impulse Response (FIR) filter with low nonzero tap into Infinite-Impulse Response (IIR) filter using the pre-determined table. The prony method is used by ghost cancellator which is IIR approximation to FIR filter which is better performance than IIR and have much larger calculation difference. The direct method for many ghost combination with low nonzero tap of NTSC(National Television System Committee) TV signal in Korea is described. The proposed method is illustrated with an example.

Keywords: NTSC, Ghost cancellation, FIR, IIR, Prony method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147
8370 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset

Authors: Sunita Jahirabadkar, Parag Kulkarni

Abstract:

Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.

Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
8369 Note to the Global GMRES for Solving the Matrix Equation AXB = F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.

Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
8368 Evaluation of Geosynthetic Forces in GRSRW under Dynamic Condition

Authors: Kooshyar Passbakhsh, Maryam Yazdi

Abstract:

Geosynthetics have proved to be suitable for reinforced soil retaining walls. Based on the increasing uses of geosynthetic reinforced soil systems in the regions, which bear frequent earthquakes, the study of dynamic behavior of structures seems necessary. Determining the reinforcement forces is; therefore, one of the most important and main points of discussions in designing retaining walls, by which we prevent from conservative planning. Thus, this paper intended to investigate the effects of such parameters as wall height, acceleration type, vertical spacing of reinforcement, type of reinforcement and soil type on forces and deformation through numerical modeling of the geosynthetic reinforced soil retaining walls (GRSRW) under dynamic loading with finite difference method by using FLAC. The findings indicate rather positive results with each parameter.

Keywords: Geosynthetic Reinforced Soil Retaining Walls (GRSRW), dynamic analysis, Geosynthetic forces, Flac

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
8367 Direct Transient Stability Assessment of Stressed Power Systems

Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara

Abstract:

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

Keywords: Power system, Transient stability, Critical trajectory method, Energy function method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
8366 A Descent-projection Method for Solving Monotone Structured Variational Inequalities

Authors: Min Sun, Zhenyu Liu

Abstract:

In this paper, a new descent-projection method with a new search direction for monotone structured variational inequalities is proposed. The method is simple, which needs only projections and some function evaluations, so its computational load is very tiny. Under mild conditions on the problem-s data, the method is proved to converges globally. Some preliminary computational results are also reported to illustrate the efficiency of the method.

Keywords: variational inequalities, monotone function, global convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
8365 Probabilistic Method of Wind Generation Placement for Congestion Management

Authors: S. Z. Moussavi, A. Badri, F. Rastegar Kashkooli

Abstract:

Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.

Keywords: Probabilistic optimal power flow, Wind power, Pointestimate methods, Congestion management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
8364 Response of Pavement under Temperature and Vehicle Coupled Loading

Authors: Yang Zhong, Mei-jie Xu

Abstract:

To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. So the dynamic change of parameter in asphalt mixture should be taken into consideration when theoretical analysis is taken out.

Keywords: Asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
8363 Improved Wavelet Neural Networks for Early Cancer Diagnosis Using Clustering Algorithms

Authors: Zarita Zainuddin, Ong Pauline

Abstract:

Wavelet neural networks (WNNs) have emerged as a vital alternative to the vastly studied multilayer perceptrons (MLPs) since its first implementation. In this paper, we applied various clustering algorithms, namely, K-means (KM), Fuzzy C-means (FCM), symmetry-based K-means (SBKM), symmetry-based Fuzzy C-means (SBFCM) and modified point symmetry-based K-means (MPKM) clustering algorithms in choosing the translation parameter of a WNN. These modified WNNs are further applied to the heterogeneous cancer classification using benchmark microarray data and were compared against the conventional WNN with random initialization method. Experimental results showed that a WNN classifier with the MPKM algorithm is more precise than the conventional WNN as well as the WNNs with other clustering algorithms.

Keywords: Clustering, microarray, symmetry, wavelet neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
8362 Multi-criteria Optimization of Square Beam using Linear Weighted Average Model

Authors: Ali Farhaninejad, Rizal Zahari, Ehsan Rasooliyazdi

Abstract:

Increasing energy absorption is a significant parameter in vehicle design. Absorbing more energy results in decreasing occupant damage. Limitation of the deflection in a side impact results in decreased energy absorption (SEA) and increased peak load (PL). Hence a high crash force jeopardizes passenger safety and vehicle integrity. The aims of this paper are to determine suitable dimensions and material of a square beam subjected to side impact, in order to maximize SEA and minimize PL. To achieve this novel goal, the geometric parameters of a square beam are optimized using the response surface method (RSM).multi-objective optimization is performed, and the optimum design for different response features is obtained.

Keywords: Crashworthiness, side impact, energy absorption, multi-objective optimization, Square beam, SEA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
8361 Lateral Torsional Buckling of an Eccentrically Loaded Channel Section Beam

Authors: L. Dahmani, S. Drizi, M. Djemai, A. Boudjemia, M. O. Mechiche

Abstract:

Channel sections are widely used in practice as beams. However, design rules for eccentrically loaded (not through shear center) beams with channel cross- sections are not available in Eurocode 3. This paper compares the ultimate loads based on the adjusted design rules for lateral torsional buckling of eccentrically loaded channel beams in bending to the ultimate loads obtained with Finite Element (FE) simulations on the basis of a parameter study. Based on the proposed design rule, this study has led to a new design rule which conforms to Eurocode 3.

Keywords: ANSYS, Eurocode 3, finite element method, lateral torsional buckling, steel channel beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051
8360 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System

Authors: Ahmed Bensenouci

Abstract:

This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.

Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
8359 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space

Authors: Amir Hadi Ziaie

Abstract:

In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.

Keywords: Gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
8358 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
8357 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus

Abstract:

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
8356 Approximate Method of Calculation of Inviscid Hypersonic Flow

Authors: F. Sokhanvar, A. B. Khoshnevis

Abstract:

In the present work steady inviscid hypersonic flows are calculated by approximate Method. Maslens' inverse method is the chosen approximate method. For the inverse problem, parabolic shock shape is chosen for the two-dimensional flow, and the body shape and flow field are calculated using Maslen's method. For the axisymmetric inverse problem paraboloidal shock is chosen and the surface distribution of pressure is obtained.

Keywords: Hypersonic flow, Inverse problem method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066
8355 Liquid Crystal Based Reconfigurable Reflectarray Antenna Design

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.

Keywords: Liquid crystal, tunable reflectarray, frequency tunability, dynamic phase range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
8354 Convergence Analysis of the Generalized Alternating Two-Stage Method

Authors: Guangbin Wang, Liangliang Li, Fuping Tan

Abstract:

In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.

Keywords: Generalized alternating two-stage method, linear system, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
8353 On the Noise Distance in Robust Fuzzy C-Means

Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni

Abstract:

In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.

Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
8352 Analysis of Distribution of Thrust, Torque and Efficiency of a Constant Chord, Constant Pitch C.R.P. Fan by H.E.S. Method

Authors: Morteza Abbaszadeh, Parvin Nikpoorparizi, Mina Shahrooz

Abstract:

For the first time since 1940 and presentation of theodorson-s theory, distribution of thrust, torque and efficiency along the blade of a counter rotating propeller axial fan was studied with a novel method in this research. A constant chord, constant pitch symmetric fan was investigated with Reynolds Stress Turbulence method in this project and H.E.S. method was utilized to obtain distribution profiles from C.F.D. tests outcome. C.F.D. test results were validated by estimation from Playlic-s analytical method. Final results proved ability of H.E.S. method to obtain distribution profiles from C.F.D test results and demonstrated interesting facts about effects of solidity and differences between distributions in front and rear section.

Keywords: C.F.D Test, Counter Rotating Propeller, H.E.S. Method, R.S.M. Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
8351 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.

Keywords: Adaptive control, Centroidal Voronoi Tessellations, composite adaptation, coordination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
8350 Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

Authors: Yisheng Rong, Jian Sun, Weiqiang Liu, Renjun Zhan

Abstract:

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.

Keywords: opposing jet, aerodynamic heating, total pressure ratio, thermal protection system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068