Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29978
Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures

Authors: R. O. Ocaya, J. J. Terblans

Abstract:

The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

Keywords: C-language, molecular dynamics, simulation, embedded atom method.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1112290

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF

References:


[1] Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M. Development of new interatomic potentials appropriate for crystalline and liquid iron, Philosophical Magazine, 83:35 (2003), 3977-3994, DOI: 10.1080/14786430310001613264
[2] Sutton AP, Chen J. Long-range Finnis-Sinclair potentials. Philosophical Magazine Letters, 1990 Vol. 61 (3), 139-156.
[3] Das A, Ghosh MM. MD simulation-based study on the melting and thermal expansion behaviours of nanoparticles under heat load. Computational Materials Science 101 (2015) 88-95. doi: 10.1016/j.commatsci.2015.01.008
[4] van der Walt C, Terblans JJ, Swart HC. Molecular dynamics study of the temperature dependence and surface orientation dependence of the calculated vacancy formation energies of Al, Ni, Cu, Pd, Ag, and Pt. Computational Materials Science 83 (2014) 7077. doi: 10.1016/j.commatsci.2013.10.039
[5] Abraham MJ, Murtolad T, Roland Schulz R, Palla S, JSmith JC, Hessa B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX (2015). doi: 10.1016/j.softx.2015.06.001
[6] Smirnov BM. Energetics of clusters with a face centered-cubic structure. Zh. Eksp. Teor. Fiz. 107 (1995), 2080-2091
[7] Terblans JJ. Calculating the bulk vacancy formation energy (Ev) for a Schottky defect in a perfect Cu(111), Cu(100) and a Cu(110) single crystal. Surf. Interface Anal. 2002; 33: 767770 doi: 10.1002/sia.1451
[8] Mattsson TR, Mattsson AE. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Physical Review B 66 (2002) 214110.
[9] Sebastian IS, Aldazabal J, Capdevila C, Garcia-Mateo C. Diffusion simulation of CrFe bcc systems at atomic level using a random walk algorithm. p hys. stat. sol. (a) 205, No. 6, 13371342 (2008). doi: 10.1002/pssa.200778124
[10] Jian-Min Z, Fei M, Ke-Wei, X. Calculation of the surface energy of fcc metals with modified embedded-atom method. Vol. 13 (7) 2004. 1009-1963/2004/13(07)/1082-09
[11] Griebel M, Knapek S, Zumbusch G, in Barth TJ et al.(Eds.), Numerical Simulation in Molecular Dynamics, in: Texts in Computational Science and Engineering 5, Springer, Berlin, 2007, ISBN 978-3-540-68094-9
[12] Car R, Parrinello M, Unified Approach for Molecular Dynamics and Density Functional Theory, Phys. Rev. Lett, 55(22), 1985, 2471-2474.
[13] Car R, Parrinello M, The Unified Approach for Molecular Dynamics and Density Functional Theory, in Simple Molecular Systems at Very High Density, vol. 186 of NATO ASI Series , series B, Physics, P.P. Loubeyre and N. Boccara (Eds.) (Plenum Press, NY), 1989, 455-476.
[14] Remler DK, Madden PA, Molecular dynamics without effective potentials via the Car-Parrinello approach, Mol. Phys., 70(6) 1990, 921-966.
[15] Tuckerman ME. Ab initio molecular dynamics: basic concepts, current trends and novel applications. J. Phys.: Condens. Matter 14 (2002) R1297R1355 Online at stacks.iop.org/JPhysCM/14/R1297
[16] Finnis MW, Sinclair JE, Philos. Mag. A 50 (1984) 45.
[17] Daw MS, Foiles SM, Baskes MI, Mater. Sci. Rep. 9 (1993) 251.
[18] Daw MS, Baskes MI, Phys. Rev. B 29 (1984) 6443.
[19] Todd BD, Lynden-Bell RM. Surface and bulk properties of metals modelled with Sutton-Chen potentials. Surface Science 281, 1993,191-206.
[20] Chamati H, Papanicolaou NI, Mishin Y, Papaconstantopoulos DA. Embedded-atom potential for Fe and its application to self-diffusion on Fe (100). Surface Science; 2006, 1-11. doi:10.1016/j.susc.2006.02.10
[21] Mishin Y, in: Yip S (Ed.), Handbook of Materials Modeling, Springer, The Netherlands, 2005, p. 459.
[22] Doye JPK, Wales DJ. Global minima for transition metal clusters described by the Sutton-Chen potentials. New J. Chem. 1998, 733-744.
[23] Swope W, Andersen H, Berens P, Wilson K. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, J. Chem. Phys., 76 (1982), pp. 637649.
[24] Landau L, Lifschitz E. Mechanics, Course of Theoretical Physics, Vol. 1, Pergamon Press, Oxford, 1976.
[25] Hockney, R. The potential calculation and some applications, Methods Comp. Phys., 9 (1970), pp. 136211.
[26] Verlet L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159 (1967), pp. 98103.
[27] Chandler D. Introduction to modern statistical mechanics, Oxford University Press, New York, 1987.