Search results for: discrete choice model
7660 Underwater Wireless Sensor Network Layer Design for Reef Restoration
Authors: T. T. Manikandan, Rajeev Sukumaran
Abstract:
Coral Reefs are very important for the majority of marine ecosystems. But, such vital species are under major threat due to the factors such as ocean acidification, overfishing, and coral bleaching. To conserve the coral reefs, reef restoration activities are carried out across the world. After reef restoration, various parameters have to be monitored in order to ensure the overall effectiveness of the reef restoration. Underwater Wireless Sensor Network (UWSN) based monitoring is widely adopted for such long monitoring activities. Since monitoring of coral reef restoration activities is time sensitive, the QoS guarantee offered by the network with respect to delay is vital. So this research focuses on the analytical modeling of network layer delay using Stochastic Network Calculus (SNC). The core focus of the proposed model will be on the analysis of stochastic dependencies between the network flow and deriving the stochastic delay bounds for the flows that traverse in tandem in UWSNs. The derived analytical bounds are evaluated for their effectiveness using discrete event simulations.
Keywords: Coral Reef Restoration, SNC, SFA, PMOO, Tandem of Queues, Delay Bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4267659 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.
Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12847658 A Comparison of Grey Model and Fuzzy Predictive Model for Time Series
Authors: A. I. Dounis, P. Tiropanis, D. Tseles, G. Nikolaou, G. P. Syrcos
Abstract:
The prediction of meteorological parameters at a meteorological station is an interesting and open problem. A firstorder linear dynamic model GM(1,1) is the main component of the grey system theory. The grey model requires only a few previous data points in order to make a real-time forecast. In this paper, we consider the daily average ambient temperature as a time series and the grey model GM(1,1) applied to local prediction (short-term prediction) of the temperature. In the same case study we use a fuzzy predictive model for global prediction. We conclude the paper with a comparison between local and global prediction schemes.Keywords: Fuzzy predictive model, grey model, local andglobal prediction, meteorological forecasting, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21567657 The Long-Term Effects of Using the Energy Box on Energy Poor Households in the Private Rental Sector in the Netherlands
Authors: B. E. Weber, N. Vrielink, M. G. Rietbergen
Abstract:
This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty.
Keywords: Energy-saving behavior, energy poverty, poverty, private rental sector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4457656 Transportation Under the Threat of Influenza
Authors: Yujun Zheng, Qin Song, Haihe Shi, and Jinyun Xue
Abstract:
There are a number of different cars for transferring hundreds of close contacts of swine influenza patients to hospital, and we need to carefully assign the passengers to those cars in order to minimize the risk of influenza spreading during transportation. The paper presents an approach to straightforward obtain the optimal solution of the relaxed problems, and develops two iterative improvement algorithms to effectively tackle the general problem.
Keywords: Influenza spread, discrete optimization, stationary point, iterative improvement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11797655 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.
Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22627654 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11957653 Alternating Current Photovoltaic Module Model
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents modeling of an Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.
Keywords: AC PV Module, Datasheet, Matlab/Simulink, PV modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29237652 Architecture Exception Governance
Authors: Ondruska Marek
Abstract:
The article presents the whole model of IS/IT architecture exception governance. As first, the assumptions of presented model are set. As next, there is defined a generic governance model that serves as a basis for the architecture exception governance. The architecture exception definition and its attributes follow. The model respects well known approaches to the area that are described in the text, but it adopts higher granularity in description and expands the process view with all the next necessary governance components as roles, principles and policies, tools to enable the implementation of the model into organizations. The architecture exception process is decomposed into a set of processes related to the architecture exception lifecycle consisting of set of phases and architecture exception states. Finally, there is information about my future research related to this area.Keywords: Architecture, dispensation, exception, governance, model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24757651 Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification
Authors: Ginalber L. O. Serra
Abstract:
This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.Keywords: Stochastic Systems, Robust Identification, Parameter Estimation, Systems Identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14917650 Validation of the Formal Model of Web Services Applications for Digital Reference Service of Library Information System
Authors: Zainab M. Musa, Nordin M. A. Rahman, Julaily A. Jusoh
Abstract:
The web services applications for digital reference service (WSDRS) of LIS model is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ needs in the reference section of libraries. The formal WSDRS model consists of the Z specifications of all the informal specifications of the model. This paper discusses the formal validation of the Z specifications of WSDRS model. The authors formally verify and thus validate the properties of the model using Z/EVES theorem prover.Keywords: Validation, verification, formal, theorem proving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13207649 Interactive Agents with Artificial Mind
Authors: Hirohide Ushida
Abstract:
This paper discusses an artificial mind model and its applications. The mind model is based on some theories which assert that emotion is an important function in human decision making. An artificial mind model with emotion is built, and the model is applied to action selection of autonomous agents. In three examples, the agents interact with humans and their environments. The examples show the proposed model effectively work in both virtual agents and real robots.Keywords: Artificial mind, emotion, interactive agent, pet robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12527648 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications
Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar
Abstract:
The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.
Keywords: Aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16227647 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture
Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira
Abstract:
This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.
Keywords: Model driven architecture, model-view-controller, bnf syntax, model, transformation, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9207646 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments
Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro
Abstract:
Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.Keywords: Lean manufacturing, DOE, value stream mapping, textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19437645 A New Divide and Conquer Software Process Model
Authors: Hina Gull, Farooque Azam, Wasi Haider Butt, Sardar Zafar Iqbal
Abstract:
The software system goes through a number of stages during its life and a software process model gives a standard format for planning, organizing and running a project. The article presents a new software development process model named as “Divide and Conquer Process Model", based on the idea first it divides the things to make them simple and then gathered them to get the whole work done. The article begins with the backgrounds of different software process models and problems in these models. This is followed by a new divide and conquer process model, explanation of its different stages and at the end edge over other models is shown.Keywords: Process Model, Waterfall, divide and conquer, Requirements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19317644 Identification of a PWA Model of a Batch Reactor for Model Predictive Control
Authors: Gorazd Karer, Igor Skrjanc, Borut Zupancic
Abstract:
The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.
Keywords: Batch reactor, fuzzy clustering, hybrid systems, identification, nonlinear systems, PWA systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21967643 A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, Bernd Michaelis
Abstract:
Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo color image sequences. These topologies are considered to different number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection with static velocity motion for continuous gesture. Therefore, the LRB topology in conjunction with Baum-Welch (BW) algorithm for training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.Keywords: Computer Vision & Image Processing, Gesture Recognition, Pattern Recognition, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22507642 The Error Analysis of An Upwind Difference Approximation for a Singularly Perturbed Problem
Authors: Jiming Yang
Abstract:
An upwind difference approximation is used for a singularly perturbed problem in material science. Based on the discrete Green-s function theory, the error estimate in maximum norm is achieved, which is first-order uniformly convergent with respect to the perturbation parameter. The numerical experimental result is verified the valid of the theoretical analysis.
Keywords: Singularly perturbed, upwind difference, uniform convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13997641 Model Membrane from Shed Snake Skins
Authors: M. Kumpugdee-Vollrath, T. Subongkot, T. Ngawhirunpat
Abstract:
In this project we are interested in studying different kinds of shed snake skins in order to apply them as a model membrane for pharmaceutical purposes instead of human stratum corneum. Many types of shed snake skins as well as model drugs were studied by different techniques. The data will give deeper understanding about the interaction between drugs and model membranes and may allow us to choose the suitable model membrane for studying the effect of pharmaceutical products.
Keywords: DSC, FTIR, permeation, SAXS, shed snake skin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23927640 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.
Keywords: Regression model, social mood, stock market prediction, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24347639 Application-Specific Instruction Sets Processor with Implicit Registers to Improve Register Bandwidth
Authors: Ginhsuan Li, Chiuyun Hung, Desheng Chen, Yiwen Wang
Abstract:
Application-Specific Instruction (ASI ) set Processors (ASIP) have become an important design choice for embedded systems due to runtime flexibility, which cannot be provided by custom ASIC solutions. One major bottleneck in maximizing ASIP performance is the limitation on the data bandwidth between the General Purpose Register File (GPRF) and ASIs. This paper presents the Implicit Registers (IRs) to provide the desirable data bandwidth. An ASI Input/Output model is proposed to formulate the overheads of the additional data transfer between the GPRF and IRs, therefore, an IRs allocation algorithm is used to achieve the better performance by minimizing the number of extra data transfer instructions. The experiment results show an up to 3.33x speedup compared to the results without using IRs.Keywords: Application-Specific Instruction-set Processors, data bandwidth, configurable processor, implicit register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15367638 Net-Banking System as a Game
Authors: N. Ghoualmi-Zine, A. Araar
Abstract:
In this article we propose to model Net-banking system by game theory. We adopt extensive game to model our web application. We present the model in term of players and strategy. We present UML diagram related the protocol game.Keywords: Game theory, model, state, web application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15527637 BER Performance of UWB Modulations through S-V Channel Model
Authors: Risanuri Hidayat
Abstract:
BER analysis of Impulse Radio Ultra Wideband (IRUWB) pulse modulations over S-V channel model is proposed in this paper. The UWB pulse is Gaussian monocycle pulse modulated using Pulse Amplitude Modulation (PAM) and Pulse Position Modulation (PPM). The channel model is generated from a modified S-V model. Bit-error rate (BER) is measured over several of bit rates. The result shows that all modulation are appropriate for both LOS and NLOS channel, but PAM gives better performance in bit rates and SNR. Moreover, as standard of speed has been given for UWB, the communication is appropriate with high bit rates in LOS channel.
Keywords: IR-UWB, S-V Channel Model, LOS NLOS, PAM, PPM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23477636 Stability Analysis of Linear Switched Systems with Mixed Delays
Authors: Xiuyong Ding, Lan Shu
Abstract:
This paper addresses the stability of the switched systems with discrete and distributed time delays. By applying Lyapunov functional and function method, we show that, if the norm of system matrices Bi is small enough, the asymptotic stability is always achieved. Finally, a example is provided to verify technically feasibility and operability of the developed results.
Keywords: Switched system, stability, Lyapunov function, Lyapunov functional, delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17837635 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9947634 Iran’s Gas Flare Recovery Options Using MCDM
Authors: Halle Bakhteeyar, Azadeh Maroufmashat, Abbas Maleki, Sourena Sattari Khavas
Abstract:
In this paper, five options of Iran’s gas flare recovery have been compared via MCDM method. For developing the model, the weighing factor of each indicator an AHP method is used via the Expert-choice software. Several cases were considered in this analysis. They are defined where the priorities were defined always keeping one criterion in first position, while the priorities of the other criteria were defined by ordinal information defining the mutual relations of the criteria and the respective indicators. The results, show that amongst these cases, priority is obtained for CHP usage where availability indicator is highly weighted while the pipeline usage is obtained where environmental indicator highly weighted and the injection priority is obtained where economic indicator is highly weighted and also when the weighing factor of all the criteria are the same the Injection priority is obtained.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34487633 Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects
Authors: Chokri Jebali, Noureddine Boulejfen, Ali Gharsallah, Fadhel M. Ghannouchi
Abstract:
In this paper, a system level behavioural model for RF power amplifier, which exhibits memory effects, and based on multibranch system is proposed. When higher order terms are included, the memory polynomial model (MPM) exhibits numerical instabilities. A set of memory orthogonal polynomial model (OMPM) is introduced to alleviate the numerical instability problem associated to MPM model. A data scaling and centring algorithm was applied to improve the power amplifier modeling accuracy. Simulation results prove that the numerical instability can be greatly reduced, as well as the model precision improved with nonlinear model.Keywords: power amplifier, orthogonal model, polynomialmodel , memory effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22777632 An Output Oriented Super-Efficiency Model for Considering Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO model.
Keywords: DEA, Super-efficiency, Time Lag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26827631 An Aggregate Production Planning Model for Brass Casting Industry in Fuzzy Environment
Authors: Ömer Faruk Baykoç, Ümit Sami Sakalli
Abstract:
In this paper, we propose a fuzzy aggregate production planning (APP) model for blending problem in a brass factory which is the problem of computing optimal amounts of raw materials for the total production of several types of brass in a period. The model has deterministic and imprecise parameters which follows triangular possibility distributions. The brass casting APP model can not always be solved by using common approaches used in the literature. Therefore a mathematical model is presented for solving this problem. In the proposed model, the Lai and Hwang-s fuzzy ranking concept is relaxed by using one constraint instead of three constraints. An application of the brass casting APP model in a brass factory shows that the proposed model successfully solves the multi-blend problem in casting process and determines the optimal raw material purchasing policies.Keywords: Aggregate production planning, Blending, brasscasting, possibilistic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908