

Abstract—The article presents the whole model of IS/IT

architecture exception governance. As first, the assumptions of
presented model are set. As next, there is defined a generic
governance model that serves as a basis for the architecture exception
governance. The architecture exception definition and its attributes
follow. The model respects well known approaches to the area that
are described in the text, but it adopts higher granularity in
description and expands the process view with all the next necessary
governance components as roles, principles and policies, tools to
enable the implementation of the model into organizations. The
architecture exception process is decomposed into a set of processes
related to the architecture exception lifecycle consisting of set of
phases and architecture exception states. Finally, there is information
about my future research related to this area.

Keywords—Architecture, dispensation, exception, governance,
model

I. INTRODUCTION

A. Article Assumptions

HERE are assumptions related to the architecture
exception governance model that must be articulated

before the model is presented.
The list of assumptions follows:
1) Projects are the only vehicles delivering changes in the

organization.
2) The model is independent on architecture description [1]

language.
3) The definition of architecture is adopted from Framework

Togaf [5].
4) The focus of architecture governance is limited only on

IS/IT architecture.
5) The incoming architecture exception (AE) is considered

as final. It means that the consideration if a deviance from
architecture and rules is architecture exception is in
responsibility of architecture governance – architecture
compliance processes.

B. Importance of AE Approach – Why to Do it

Nowadays, architecture governance is not new activity
performed by organizations. Actually, the importance of the
activity is growing because of increasing complexity of
organizations, especially when IT systems are considered.
Many Frameworks focused on architecture governance embed
model of transition between AS-IS architecture and target TO-
BE architecture [5]. Practice shows that projects that
implement different organization’s requirements cannot always
comply with the defined TO-BE architecture and gaps in
architecture transition emerge.

M. Ondruska, is with Faculty of Informatics and Statistics, University of

Economic, Prague, 1360 67 Czech Republic. (e-mail: marekon@gmail.com).

Actually, this occurs very often in projects. It is necessary to

govern and manage these discrepancies to eliminate them and
achieve the target architecture. Later, there is defined special
term for these discrepancies named architecture exception.
Practice shows, that if these discrepancies are not governed
well, these discrepancies change inevitably the target
architecture, therefore the target architecture is never achieved.
It is necessary to govern the discrepancies in such a way that
they are eliminated in reasonable time horizon. The solution
time horizon must be definite.

C. Known approaches to architecture exceptions

The area of architecture exceptions / discrepancies is not
new. There are approaches that address and give a basic frame
how to solve that area. Let us briefly summarize chosen well
known approaches.

1) Togaf – Architecture Governance – Dispensation Process
“A Compliance Assessment can be rejected where the

subject area (design, operational, service level, or technology)
are not compliant.

In this case the subject area can:
i. Be adjusted or realigned in order to meet the compliance

requirements
ii. Request a dispensation

Where a Compliance Assessment is rejected, an alternate
route to meeting interim conformance is provided through
dispensations. These are granted for a given time period and
set of identified service and operational criteria that must be
enforced during the lifespan of the dispensation. Dispensations
are not granted indefinitely, but are used as a mechanism to
ensure that service levels and operational levels are met while
providing a level of flexibility in their implementation and
timing. The time-bound nature of dispensations ensures that
they are a major trigger in the compliance cycle.” [5]

2) SOA Governance Framework – Dispensation Process
“The dispensation process is the exception and appeals

process that allows a project or application team to appeal
noncompliance to established processes, standards, policies
and guidelines as defined within the governance regimen.
Examples include service funding, service ownership, service
identification, etc. The result would be a granted exception.”
[4]

D. Benefits of the Presented Model

The benefits of the article and the presented architecture
exception governance model come from definition of an
overall model for governing of architecture exceptions. It
means that it is not only focused on processes, but defines all
the next necessary components of governance model. The
model is not limited on dispensation process, but it defines full
set of processes related and needed to govern architecture
exceptions in a relationship with architecture exception
lifecycle. Finally, the granularity adopted for the model is
higher than for the above known approaches.

Architecture Exception Governance

T

Ondruska Marek

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:6, 2012

765International Scholarly and Scientific Research & Innovation 6(6) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

6,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

84
1.

pd
f

E. Used Methodology

Fig. 1 Design Methodology for the Model

Fig. 1 shows the proposed methodology that has been used

to design the model of architecture exception governance. As
next, the methodology is described, but it is not possible to
present all the aspects in high detail due to limited scope of the
article. Let us focus on the main aspects of the methodology.

As first, the methodology is decomposed into two main
phases. The Analysis Phase encompasses all the activities
related to analysis as identification and analysis of different
known approaches to architecture exceptions and the others
depicted. The Design Phase is primarily about the design of
the model base on the integration of knowledge gained in the
Analysis Phase.

Between these two phases there are identified interfaces in
the form of requirements that had to be followed during the
Design Phase. It means that the model is implementation of
these requirements

II. GOVERNANCE

As for any governance system, let us set the main
components of such system. The components are typically
considered: processes, roles, organization structure, principles
and procedures, tools. The definition respects chosen aspects
of approaches described in [2], [3] and [6].

Fig. 2 Overall Governance Model

Meta Governance: The Governance system must be
developed in time, it is not a static system, but it is a dynamic
one. The Meta governance system ensures the improvement of
the governance in the organization in time.

The Governance: is a system of processes, roles, principles
and policies and tools that are implemented to ensure that the
organization (governed area) is governed in a way that the set
organization’s goals and strategy are met.

A. Governance Processes

1) Analysis - analyzing of the current governance model and
its implementation from the issues and problems point of
view.

2) Design - redesigning of the current governance model to
better address the governance needs.

3) Implementation (includes training) - implementation of
new version of the model.

4) Monitoring - monitoring of the implemented governance
model, looking for issues and problems to be solved.

B. Governed Processes

Governed processes are specific processes of governed area
(architecture exceptions). They are not generic like the
governance processes defined above. They are discussed later
as part of the AE Governance Model.

C. Roles, Organization Model, Artifacts and Tools

Roles, Organization model, Artifacts and Tools as the next
components of Governance model must be defined.

1) Roles - the responsibility framework for different process

tasks must be set.
2) Organization model - Assigning of concrete people,

organization units to defined logical roles (the previous
component called “Roles”). This component is typically
setup in the implementation of governance. It is not
covered by the article.

3) Artifacts - principles and policies encapsulated in different
forms (patterns, models, guidelines and others).

4) Tools - mainly the application support tools.

III. ARCHITECTURE EXCEPTION

A. Architecture Exception Definition

Architecture Exception is an entity (type), that gives a
designed solution of the project into relationship with defined
TO-BE architecture. Simultaneously, it must be true, that the
relationship is evaluated as discrepancy. The discrepancy
emerges when there exists at least one inconsistency between
the designed solution and the TO-BE architecture on the
defined level of architecture description detail. Instance of
architecture exception means a concrete occurrence or
emergence of architecture exception. Finally, the exception has
the attributes depicted on Fig. 3.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:6, 2012

766International Scholarly and Scientific Research & Innovation 6(6) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

6,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

84
1.

pd
f

Fig. 3 Architecture exception entity

B. AE Attributes Definition

1) ID – unambiguous identification of architecture exception.
2) Name – assigned name to architecture exception.
3) Exception scope – designed solution – reference or

description of the solution that is not in compliance with
TO-BE architecture.

4) Exception scope – TO-BE architecture – reference or
description of TO-BE architecture that is violated with the
solution.

5) Costs of elimination – calculated costs for elimination of
architecture exception.

6) Owner – assigned responsible person to architecture
exception.

7) State – actual state of the architecture exception.
8) Solver – assigned solver/project to elimination of

architecture exception.
9) Generator – identification of project that has generated the

exception.

C. AE Lifecycle Phases and States

Now, let us focus on the architecture exception lifecycle
Fig.4. The goal is to set a model of phases and states that
constraint the lifecycle of architecture exception.

Fig. 4 Architecture exception lifecycle

1) AE States
1) Final – the final state means that the scope of architecture

exception is fixed before the exception is being processed
with the Architecture Exception Governance.

2) Solved – when architecture exception is being solved

3) Resolved – the state when the elimination of architecture
exception by project is accepted by architecture exception
owner.

4) Archived – An architecture Exception is in the archived
state when has been resolved but it is necessary to keep
record about it, because of for example audit purposes.

5) Shredded – This state means that the architecture
exception is deleted and documentation is no longer
accessible.

2) AE Phases
1) Capture – The capture phase covers all the activities

necessary to start solving the architecture exception from
register to assignment of the architecture exception owner.

2) Manage – The manage phase is about architecture
exception solving. The goal of this phase is to eliminate
the architecture exception through suitable project.

3) Archive – The archive phase consists of processes related
to archiving.

4) Shred – The shred phase covers shredding of architecture
exceptions, when they are no longer needed for any
purposes.

IV. ARCHITECTURE EXCEPTION GOVERNANCE

A. Processes (Governed)

As first, let us define the process model of architecture
exception governance. The processes are categorized in
compliance with architecture exception lifecycle. It means the
processes are grouped or mapped to the phases of the
lifecycle:

Capture
1) Managing and registration of incoming architecture

exceptions
2) Assignment of owner to architecture exception
3) Costs evaluation of architecture exception elimination
4) Finalization of architecture exception registration
 Manage
5) Searching and assignment of suitable architecture

exception solver
6) Provisioning of finance and budget to solver to

architecture exception elimination
7) Monitoring of architecture exception elimination

development
8) Acceptation of the elimination / solution of architecture

exception
Archive

9) Architecture exception archiving process
10) Provide archived architecture exception documentation

Shred:
11) Shredding of architecture exceptions with expired archive

time period
Others / cross processes

12) Restructuring / redefinition of architecture exceptions in
portfolio when target architecture is changed

13) Assure that architecture standards need for architecture
exception assessment are defined

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:6, 2012

767International Scholarly and Scientific Research & Innovation 6(6) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

6,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

84
1.

pd
f

14) Consolidation of Architecture portfolio – merging and
splitting of architecture exceptions

The governance model block is a set consisting of process,
related roles, related principles and policies, related tolls.
Formally, the block = {process, roles, principles and policies,
tools} for given process that setups the context. Fig. 5 depicts
the governance blocks of IS/IT architecture exception
governance related to the project and IS/IT architecture
governance.

Fig. 5 Architecture, project and exception governance

How to describe the governance model block:
Identification of block – example BCP (i, k), where i –

identification of the architecture exception, k – is identification
of process in the phase.

Required attributes of each block are as follows:
1) Process name
2) Process goal
3) Process trigger
4) Incomes
5) Activities
6) Outputs
7) Roles and Responsibilities
8) Principles and policies
9) Tools

Fig. 6 BCP02 - Assignment of owner to architecture exception –

example

Block Identification: BCP02 - Assignment of owner to
architecture exception, Fig 6.:
1) Process name: Assignment of owner to the architecture

exception

2) Process goal: Find and assign an owner to the architecture
exception

3) Process trigger: Registration of new incoming architecture
exception

4) Incomes: Documentation of the architecture exception
 Activities: AE owner search and assignment, provide AE
information

5) Outputs: Identified owner of architecture exception
6) Roles: SPC (Single Point of Contact), AE Gov.

Committee, AE Information Storage and Provider
7) Principles and policies: Rules for owner assignment,

requirements on registration data
8) Tools: Architecture exception portfolio (application)

B. Principles and Policies

1) Architecture exception documentation – templates with
requested areas of information about architecture
exception.

2) Architecture exception owner assignment – set of
principles supporting the assignment of owner to
architecture exception.

3) Architecture exception evaluation – evaluation
methodology and rules how to evaluate an architecture
exception.

4) How to find the right architecture exception solver –
defined rules or criteria how to find a project that is
capable to solve the specified architecture exception.

5) Budget calculation and assignment to solver rules.
6) Architecture exception elimination acceptance criteria.
7) Architecture exception archiving rules – shredding

periods, …

C. Roles

1) Generator of architecture exception
2) Single point of contact
3) Architecture exception owner
4) Architecture exception evaluator
5) Architecture exception solver
6) Architecture exception governance committee
7) Provider of architecture exception information
8) Finance provider to architecture exception elimination

D. Tools

1) Architecture exceptions portfolio
2) Architecture exception evaluator

V. WHY GOVERNANCE NOT ONLY PROCESSES

The discussion why it is necessary to build whole
governance model and not only processes is based on
definition of governance. The goal is to show, that there exists
components that must be included in the model, but they are
not processes.

The definition of governance says that there are five
components of governance: processes, roles, principles and
policies, organization structure and finally tools.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:6, 2012

768International Scholarly and Scientific Research & Innovation 6(6) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

6,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

84
1.

pd
f

As it was discussed, it is necessary to setup roles and
responsibilities like architecture exception owner that is crucial
role in the architecture exception governance. As next, there
are specific principles and policies that must be adopted like
architecture exception cost of elimination evaluation
methodology. Finally, processes related to architecture
exception governance should be supported with tools that
enable efficient performance of the processes.

As a result, it is important to define not only processes as
architecture exceptions or dispensation process, but even all
the next components of governance model.

VI. CONCLUSION

The whole architecture exception governance model has
been presented. There are areas that were not discussed as
detail design of architecture exception governance processes,
implementation of the model into organizations, or integration
of the model into governance structures adopted by
organizations. Let us emphasize project governance and
architecture governance that must be integrated with the
architecture exception governance model. All the mentioned
areas are my future directions of research in the area of
architecture exceptions.

REFERENCES

[1] ISO. (2000). IEEE Recommended Practice for Architectural Description
of Software-Intensive Systems. Retrieved from
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=875998

[2] Marks, E.A. (2008) Service-Oriented Architecture Governance for the
Services Driven Enterprises, John Wiley & Sons.

[3] Oracle. SOA Governance: Framework and Best Practices. Retrieved
from http://www.oracle.com/us/technologies/soa/oracle-soa-governance-
best-practice-066427.pdf

[4] The Open Group. (2009) SOA Governance Framework. Retrieved from
http://www.opengroup.org/projects/soa-
governance/uploads/40/19263/SOA_Governance_Architecture_v2.4.pdf

[5] The Open Group. (2011) TOGAF Version 9.1. The Open Group.
Retrieved from http://pubs.opengroup.org/architecture/togaf9-doc/arch/

[6] Weill P., Ross J.W. (2004). IT Governance: How Top Performers
Manage IT Decision Rights for Superior Results. Harvard Business
School Press.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:6, 2012

769International Scholarly and Scientific Research & Innovation 6(6) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

6,
 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

84
1.

pd
f

