Model Membrane from Shed Snake Skins
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Model Membrane from Shed Snake Skins

Authors: M. Kumpugdee-Vollrath, T. Subongkot, T. Ngawhirunpat

Abstract:

In this project we are interested in studying different kinds of shed snake skins in order to apply them as a model membrane for pharmaceutical purposes instead of human stratum corneum. Many types of shed snake skins as well as model drugs were studied by different techniques. The data will give deeper understanding about the interaction between drugs and model membranes and may allow us to choose the suitable model membrane for studying the effect of pharmaceutical products.

Keywords: DSC, FTIR, permeation, SAXS, shed snake skin.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089204

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402

References:


[1] T. Ngawhirunpat, P. Opanasopit, S. Prakongpan, Comparison of skin transport and metabolism of ethyl nicotinate in various species. Eur J Pharm Biopharm, 2004, 58(3), 645-51.
[2] T. Ngawhirunpat, S. Panomsuk, P. Opanasopit, T. Rojanarata, T. Hatanaka, Comparison of the percutaneous absorption of hydrophilic and lipophilic compounds in shed snake skin and human skin.. Pharmazie, 2004, 61(4), 331-5
[3] T. Itoh, J. Xia, R. Magavi, T. Nishihata, H. Rytting, Use of shed snake skin s model membrane for percutaneous absorption studies; comparison with human skin. Pharmaceutical Research, 1990, 7(10), 1042-7.
[4] N. Wonglertnirant, T. Ngawhirunpat, M. Kumpugdee-Vollrath, Evaluation of skin enhancing mechanism of surfactants on the biomembrane from shed snake skin, Biological & Pharmaceutical Bulletin, 2012, 35(4), 1-9.
[5] A. Nasedkin, J. Davidsson, M. Kumpugdee-Vollrath, Determination of nanostructure of liposomes containing two model drugs by X-ray scattering from a synchrotron source, Journal of Synchrotron Radiation, 2013, 20, 721-728.
[6] H. Bilek, N. Wonglertnirant, T. Ngawhirunpat, P. Opanasopit, M. Kumpugdee-Vollrath, Effect of terpenes on the skin permeation of ketoprofen through shed snake skin, Silpakorn University Science and Technology Journal, Silpakorn University Publisher, 2009, 3 (2), 33-41.
[7] H. Bilek, M. Kumpugdee Vollrath, Entwicklung Transdermaler Drug Delivery Systeme, Nachhaltige Forschung in Wachstumsbereichen Band II, Beuth Hochschule für Technik, Logos Verlag Berlin, 2011, 15-20.
[8] G. Ahmadi, Physikalisch - chemische Untersuchungen von Modellmembranen am Beispiel abgeworfener Schlangenhäute, Bachelor-Thesis, Beuth Hochschule für Technik Berlin - University of Applied Sciences, Berlin, Germany, 2013.
[9] A. Naik, Y. N. Kalia, R. H. Guy, Transdermal drug delivery: overcoming the skin’s barrier function, PSTT, 2000, 3 (9), 318-326.
[10] H. A. E. Benson, Transdermal Drug Delivery: Penetration Enhancement Techniques, Current Drug Delivery, 2005, 2, 23-33.
[11] P. N. Craig, In Comprehensive Medicinal Chemistry, C. Hansch, P. G. Sammes, J. B. Taylor, Eds., Pergamon: New York, 1990, Vol. 6.
[12] J.J. Sheng, N.A. Kasim, R. Chandrasekharan, G.L. Amidon, Solubilization and dissolution of insoluble weak acid, ketoprofen: Effects of pH combined with surfactant, Eur. J. Pharm., 2006, 306-314.
[13] E. Beetge, J. du Plessis, D.G. Muller, C. Goosen, F.J. van Rensburg, The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAID's on their transdermal absorption, Int. J. Pharm., 2000, 261-264.
[14] http://www.chemaxon.com/products/calculator-plugins/property-predictors/#pka cited on 18 September 2013
[15] http://www.sciencedirect.com/science/article/pii/S0378517310004163 cited on 18 September 2013
[16] M. Deak, H. Falk, On the chemistry of resveratrol diastereomers. Monat fur Chem, 2003, 134, 883-888.
[17] J. M. López-Nicolás, F. García-Carmona, Aggregation State and pKa Values of (E)-Resveratrol As Determined by Fluorescence Spectroscopy and UV−Visible Absorption, J. Agric. Food Chem., 2008, 56 (17), 7600–7605.
[18] H. Sjöberg, K. Karami, P. Beronius, L. Sundelof, Ionization conditions for iontophoretic drug delivery. A revised pKa of lidocaine hydrochloride in aqueous solution at 25°C established by precision conductometry, Int. J. Pharm., 1996, 141, 63-70.
[19] http://www.ifna-int.org/ifna/e107_files/downloads/lectures/ H1LocalAne.pdf cited on 27 September 2013