Search results for: Iterative Cellular Image Processing Algorithm (ICIPA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5853

Search results for: Iterative Cellular Image Processing Algorithm (ICIPA)

5403 Extraction of Semantic Digital Signatures from MRI Photos for Image-Identification Purposes

Authors: Marios Poulos, George Bokos

Abstract:

This paper makes an attempt to solve the problem of searching and retrieving of similar MRI photos via Internet services using morphological features which are sourced via the original image. This study is aiming to be considered as an additional tool of searching and retrieve methods. Until now the main way of the searching mechanism is based on the syntactic way using keywords. The technique it proposes aims to serve the new requirements of libraries. One of these is the development of computational tools for the control and preservation of the intellectual property of digital objects, and especially of digital images. For this purpose, this paper proposes the use of a serial number extracted by using a previously tested semantic properties method. This method, with its center being the multi-layers of a set of arithmetic points, assures the following two properties: the uniqueness of the final extracted number and the semantic dependence of this number on the image used as the method-s input. The major advantage of this method is that it can control the authentication of a published image or its partial modification to a reliable degree. Also, it acquires the better of the known Hash functions that the digital signature schemes use and produces alphanumeric strings for cases of authentication checking, and the degree of similarity between an unknown image and an original image.

Keywords: Computational Geometry, MRI photos, Image processing, pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
5402 A Novel Architecture for Wavelet based Image Fusion

Authors: Susmitha Vekkot, Pancham Shukla

Abstract:

In this paper, we focus on the fusion of images from different sources using multiresolution wavelet transforms. Based on reviews of popular image fusion techniques used in data analysis, different pixel and energy based methods are experimented. A novel architecture with a hybrid algorithm is proposed which applies pixel based maximum selection rule to low frequency approximations and filter mask based fusion to high frequency details of wavelet decomposition. The key feature of hybrid architecture is the combination of advantages of pixel and region based fusion in a single image which can help the development of sophisticated algorithms enhancing the edges and structural details. A Graphical User Interface is developed for image fusion to make the research outcomes available to the end user. To utilize GUI capabilities for medical, industrial and commercial activities without MATLAB installation, a standalone executable application is also developed using Matlab Compiler Runtime.

Keywords: Filter mask, GUI, hybrid architecture, image fusion, Matlab Compiler Runtime, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
5401 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images

Authors: A. Biran, P. Sobhe Bidari, A. Almazroe V. Lakshminarayanan, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.

Keywords: Diabetic retinopathy, fundus images, STARE, Gabor filter, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
5400 Image Search by Features of Sorted Gray level Histogram Polynomial Curve

Authors: Awais Adnan, Muhammad Ali, Amir Hanif Dar

Abstract:

Image Searching was always a problem specially when these images are not properly managed or these are distributed over different locations. Currently different techniques are used for image search. On one end, more features of the image are captured and stored to get better results. Storing and management of such features is itself a time consuming job. While on the other extreme if fewer features are stored the accuracy rate is not satisfactory. Same image stored with different visual properties can further reduce the rate of accuracy. In this paper we present a new concept of using polynomials of sorted histogram of the image. This approach need less overhead and can cope with the difference in visual features of image.

Keywords: Sorted Histogram, Polynomial Curves, feature pointsof images, Grayscale, visual properties of image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
5399 Protein Graph Partitioning by Mutually Maximization of cycle-distributions

Authors: Frank Emmert Streib

Abstract:

The classification of the protein structure is commonly not performed for the whole protein but for structural domains, i.e., compact functional units preserved during evolution. Hence, a first step to a protein structure classification is the separation of the protein into its domains. We approach the problem of protein domain identification by proposing a novel graph theoretical algorithm. We represent the protein structure as an undirected, unweighted and unlabeled graph which nodes correspond the secondary structure elements of the protein. This graph is call the protein graph. The domains are then identified as partitions of the graph corresponding to vertices sets obtained by the maximization of an objective function, which mutually maximizes the cycle distributions found in the partitions of the graph. Our algorithm does not utilize any other kind of information besides the cycle-distribution to find the partitions. If a partition is found, the algorithm is iteratively applied to each of the resulting subgraphs. As stop criterion, we calculate numerically a significance level which indicates the stability of the predicted partition against a random rewiring of the protein graph. Hence, our algorithm terminates automatically its iterative application. We present results for one and two domain proteins and compare our results with the manually assigned domains by the SCOP database and differences are discussed.

Keywords: Graph partitioning, unweighted graph, protein domains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
5398 Progressive AAM Based Robust Face Alignment

Authors: Daehwan Kim, Jaemin Kim, Seongwon Cho, Yongsuk Jang, Sun-Tae Chung, Boo-Gyoun Kim

Abstract:

AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.

Keywords: Face Alignment, AAM, facial feature detection, model matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
5397 Efficient Copy-Move Forgery Detection for Digital Images

Authors: Somayeh Sadeghi, Hamid A. Jalab, Sajjad Dadkhah

Abstract:

Due to availability of powerful image processing software and improvement of human computer knowledge, it becomes easy to tamper images. Manipulation of digital images in different fields like court of law and medical imaging create a serious problem nowadays. Copy-move forgery is one of the most common types of forgery which copies some part of the image and pastes it to another part of the same image to cover an important scene. In this paper, a copy-move forgery detection method proposed based on Fourier transform to detect forgeries. Firstly, image is divided to same size blocks and Fourier transform is performed on each block. Similarity in the Fourier transform between different blocks provides an indication of the copy-move operation. The experimental results prove that the proposed method works on reasonable time and works well for gray scale and colour images. Computational complexity reduced by using Fourier transform in this method.

Keywords: Copy-Move forgery, Digital Forensics, Image Forgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
5396 Image Retrieval: Techniques, Challenge, and Trend

Authors: Hui Hui Wang, Dzulkifli Mohamad, N.A Ismail

Abstract:

This paper attempts to discuss the evolution of the retrieval techniques focusing on development, challenges and trends of the image retrieval. It highlights both the already addressed and outstanding issues. The explosive growth of image data leads to the need of research and development of Image Retrieval. However, Image retrieval researches are moving from keyword, to low level features and to semantic features. Drive towards semantic features is due to the problem of the keywords which can be very subjective and time consuming while low level features cannot always describe high level concepts in the users- mind.

Keywords: content based image retrieval, keyword based imageretrieval, semantic gap, semantic image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
5395 PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy

Authors: Wenhao Lan, Ning Li, Qiang Tong

Abstract:

To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context.

Keywords: Mirror symmetry, oriented bounding box, point cloud registration, PointNetLK-OBB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
5394 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
5393 Transportation Under the Threat of Influenza

Authors: Yujun Zheng, Qin Song, Haihe Shi, and Jinyun Xue

Abstract:

There are a number of different cars for transferring hundreds of close contacts of swine influenza patients to hospital, and we need to carefully assign the passengers to those cars in order to minimize the risk of influenza spreading during transportation. The paper presents an approach to straightforward obtain the optimal solution of the relaxed problems, and develops two iterative improvement algorithms to effectively tackle the general problem.

Keywords: Influenza spread, discrete optimization, stationary point, iterative improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
5392 Image Contrast Enhancement based Sub-histogram Equalization Technique without Over-equalization Noise

Authors: Hyunsup Yoon, Youngjoon Han, Hernsoo Hahn

Abstract:

In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes these regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrasts in the images and the results are compared to the conventional approaches to show its superiority.

Keywords: Contrast Enhancement, Histogram Equalization, Histogram Region Equalization, Equalization Noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3419
5391 Feature's Extraction of Human Body Composition in Images by Segmentation Method

Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani

Abstract:

Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.

Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
5390 Analysis and Comparison of Image Encryption Algorithms

Authors: İsmet Öztürk, İbrahim Soğukpınar

Abstract:

With the fast progression of data exchange in electronic way, information security is becoming more important in data storage and transmission. Because of widely using images in industrial process, it is important to protect the confidential image data from unauthorized access. In this paper, we analyzed current image encryption algorithms and compression is added for two of them (Mirror-like image encryption and Visual Cryptography). Implementations of these two algorithms have been realized for experimental purposes. The results of analysis are given in this paper.

Keywords: image encryption, image cryptosystem, security, transmission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4958
5389 Color Image Segmentation Using SVM Pixel Classification Image

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.

Keywords: Image Segmentation, Support Vector Machine, Fuzzy C–Means, Pixel Feature, Texture Feature, Homogeneity model, Gabor Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6747
5388 Functional Store Image and Corporate Social Responsibility Image: A Congruity Analysis on Store Loyalty

Authors: Jamaliah Mohd. Yusof, Rosidah Musa, Sofiah Abd. Rahman

Abstract:

With previous studies that examined the importance of functional store image and CSR, this study is aimed at examining their effects in the self-congruity model in influencing store loyalty. In particular, this study developed and tested a structural model in the context of retailing industry on the self-congruity theory. Whilst much of the self-congruity studies have incorporated functional store image, there has been lack of studies that examined social responsibility image of retail stores in the self-congruity studies. Findings indicate that self-congruity influence on store loyalty was mediated by both functional store image and social responsibility image. In influencing store loyalty, the findings have shown that social responsibility image has a stronger influence on store loyalty than functional store image. This study offers important findings and implications for future research as it presents a new framework on the importance of social responsibility image.

Keywords: Self-congruity, functional store image, social responsibility image, store loyalty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
5387 Unequal Error Protection of Facial Features for Personal ID Images Coding

Authors: T. Hirner, J. Polec

Abstract:

This paper presents an approach for an unequal error protection of facial features of personal ID images coding. We consider unequal error protection (UEP) strategies for the efficient progressive transmission of embedded image codes over noisy channels. This new method is based on the progressive image compression embedded zerotree wavelet (EZW) algorithm and UEP technique with defined region of interest (ROI). In this case is ROI equal facial features within personal ID image. ROI technique is important in applications with different parts of importance. In ROI coding, a chosen ROI is encoded with higher quality than the background (BG). Unequal error protection of image is provided by different coding techniques and encoding LL band separately. In our proposed method, image is divided into two parts (ROI, BG) that consist of more important bytes (MIB) and less important bytes (LIB). The proposed unequal error protection of image transmission has shown to be more appropriate to low bit rate applications, producing better quality output for ROI of the compresses image. The experimental results verify effectiveness of the design. The results of our method demonstrate the comparison of the UEP of image transmission with defined ROI with facial features and the equal error protection (EEP) over additive white gaussian noise (AWGN) channel.

Keywords: Embedded zerotree wavelet (EZW), equal error protection (EEP), facial features, personal ID images, region of interest (ROI), unequal error protection (UEP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
5386 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis

Authors: Gaoyong Luo

Abstract:

The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.

Keywords: Edge strength, Fast lifting wavelet, Image denoising, Local variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
5385 Color Image Segmentation Using Competitive and Cooperative Learning Approach

Authors: Yinggan Tang, Xinping Guan

Abstract:

Color image segmentation can be considered as a cluster procedure in feature space. k-means and its adaptive version, i.e. competitive learning approach are powerful tools for data clustering. But k-means and competitive learning suffer from several drawbacks such as dead-unit problem and need to pre-specify number of cluster. In this paper, we will explore to use competitive and cooperative learning approach to perform color image segmentation. In competitive and cooperative learning approach, seed points not only compete each other, but also the winner will dynamically select several nearest competitors to form a cooperative team to adapt to the input together, finally it can automatically select the correct number of cluster and avoid the dead-units problem. Experimental results show that CCL can obtain better segmentation result.

Keywords: Color image segmentation, competitive learning, cluster, k-means algorithm, competitive and cooperative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
5384 Particle Image Velocimetry for Measuring Water Flow Velocity

Authors: King Kuok Kuok, Po Chan Chiu

Abstract:

Floods are natural phenomena, which may turn into disasters causing widespread damage, health problems and even deaths. Nowadays, floods had become more serious and more frequent due to climatic changes. During flooding, discharge measurement still can be taken by standing on the bridge across the river using portable measurement instrument. However, it is too dangerous to get near to the river especially during high flood. Therefore, this study employs Particle Image Velocimetry (PIV) as a tool to measure the surface flow velocity. PIV is a image processing technique to track the movement of water from one point to another. The PIV codes are developed using Matlab. In this study, 18 ping pong balls were scattered over the surface of the drain and images were taken with a digital SLR camera. The images obtained were analyzed using the PIV code. Results show that PIV is able to produce the flow velocity through analyzing the series of images captured.

Keywords: Particle Image Velocimetry, flow velocity, surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2845
5383 Integrating Low and High Level Object Recognition Steps

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
5382 Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems

Authors: Thomas O. Olwal, Michael A. van Wyk, Barend J. van Wyk

Abstract:

In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.

Keywords: discrete polyphase matched filters, maximum likelihood estimators, soft timing phase estimation, wireless mobile systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
5381 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks

Authors: Lewis E. Hibell, Honghai Liu, David J. Brown

Abstract:

This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.

Keywords: Image Enhancement, Neural Networks, Multi-Frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
5380 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
5379 An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain

Authors: R. Krishnamoorthy, N. Amudhavalli, M.K. Sivakkolunthu

Abstract:

X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods.

Keywords: mammograms, image enhancement, orthogonalpolynomials, contrast improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
5378 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: Classification, SOFM, neural network, RGB images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
5377 Combined Hashing/Watermarking Method for Image Authentication

Authors: Vlado Kitanovski, Dimitar Taskovski, Sofija Bogdanova

Abstract:

In this paper we present a combined hashing/watermarking method for image authentication. A robust image hash, invariant to legitimate modifications, but fragile to illegitimate modifications is generated from the local image characteristics. To increase security of the system the watermark is generated using the image hash as a key. Quantized Index Modulation of DCT coefficients is used for watermark embedding. Watermark detection is performed without use of the original image. Experimental results demonstrate the effectiveness of the presented method in terms of robustness and fragility.

Keywords: authentication, blind watermarking, image hash, semi-fragile watermarking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
5376 A New Ridge Orientation based Method of Computation for Feature Extraction from Fingerprint Images

Authors: Jayadevan R., Jayant V. Kulkarni, Suresh N. Mali, Hemant K. Abhyankar

Abstract:

An important step in studying the statistics of fingerprint minutia features is to reliably extract minutia features from the fingerprint images. A new reliable method of computation for minutiae feature extraction from fingerprint images is presented. A fingerprint image is treated as a textured image. An orientation flow field of the ridges is computed for the fingerprint image. To accurately locate ridges, a new ridge orientation based computation method is proposed. After ridge segmentation a new method of computation is proposed for smoothing the ridges. The ridge skeleton image is obtained and then smoothed using morphological operators to detect the features. A post processing stage eliminates a large number of false features from the detected set of minutiae features. The detected features are observed to be reliable and accurate.

Keywords: Minutia, orientation field, ridge segmentation, textured image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
5375 Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

Authors: Visuwan D., Phruksaphanrat B

Abstract:

In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyze and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyze and compare the performance of the proposed cellular layout and the current layout. It found that the proposed cellular layout can generate better performances than the current layout. In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyze and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyze and compare the performance of the proposed cellular layout and the current layout. It found that the proposed cellular layout can generate better performances than the current layout. 

Keywords: Layout, Electronic Manufacturing Service Plant (EMS), Computer Simulation, Cellular Manufacturing System (CMS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3461
5374 Intelligent Audio Watermarking using Genetic Algorithm in DWT Domain

Authors: M. Ketcham, S. Vongpradhip

Abstract:

In this paper, an innovative watermarking scheme for audio signal based on genetic algorithms (GA) in the discrete wavelet transforms is proposed. It is robust against watermarking attacks, which are commonly employed in literature. In addition, the watermarked image quality is also considered. We employ GA for the optimal localization and intensity of watermark. The watermark detection process can be performed without using the original audio signal. The experimental results demonstrate that watermark is inaudible and robust to many digital signal processing, such as cropping, low pass filter, additive noise.

Keywords: Intelligent Audio Watermarking, GeneticAlgorithm, DWT Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057