Search results for: Features extraction parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5652

Search results for: Features extraction parameters

5202 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
5201 Calculation of the Ceramics Weibull Parameters

Authors: V. Fuis, T. Navrat

Abstract:

The paper deals with calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). On that score, a special testing jig was made, in which 40 heads were destructed. From the measured values of circumferential strains of the head-s external spherical surface under destruction, the state of stress in the head under destruction was established using the final elements method (FEM). From the values obtained, the sought for parameters of the ceramic material were calculated using Weibull-s weakest-link theory.

Keywords: Hip joint endoprosthesis, ceramic head, FEM analysis, Weibull's weakest-link theory, failure probability, material parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
5200 A New Method for Image Classification Based on Multi-level Neural Networks

Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed

Abstract:

In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.

Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
5199 Text-independent Speaker Identification Based on MAP Channel Compensation and Pitch-dependent Features

Authors: Jiqing Han, Rongchun Gao

Abstract:

One major source of performance decline in speaker recognition system is channel mismatch between training and testing. This paper focuses on improving channel robustness of speaker recognition system in two aspects of channel compensation technique and channel robust features. The system is text-independent speaker identification system based on two-stage recognition. In the aspect of channel compensation technique, this paper applies MAP (Maximum A Posterior Probability) channel compensation technique, which was used in speech recognition, to speaker recognition system. In the aspect of channel robust features, this paper introduces pitch-dependent features and pitch-dependent speaker model for the second stage recognition. Based on the first stage recognition to testing speech using GMM (Gaussian Mixture Model), the system uses GMM scores to decide if it needs to be recognized again. If it needs to, the system selects a few speakers from all of the speakers who participate in the first stage recognition for the second stage recognition. For each selected speaker, the system obtains 3 pitch-dependent results from his pitch-dependent speaker model, and then uses ANN (Artificial Neural Network) to unite the 3 pitch-dependent results and 1 GMM score for getting a fused result. The system makes the second stage recognition based on these fused results. The experiments show that the correct rate of two-stage recognition system based on MAP channel compensation technique and pitch-dependent features is 41.7% better than the baseline system for closed-set test.

Keywords: Channel Compensation, Channel Robustness, MAP, Speaker Identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
5198 Integrated ACOR/IACOMV-R-SVM Algorithm

Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud

Abstract:

A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.

Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
5197 Evaluation of Solid Phase Micro-extraction with Standard Testing Method for Formaldehyde Determination

Authors: Y. L. Yung, Kong Mun Lo

Abstract:

In this study, solid phase micro-extraction (SPME) was optimized to improve the sensitivity and accuracy in formaldehyde determination for plywood panels. Further work has been carried out to compare the newly developed technique with existing method which reacts formaldehyde collected in desiccators with acetyl acetone reagent (DC-AA). In SPME, formaldehyde was first derivatized with O-(2,3,4,5,6 pentafluorobenzyl)-hydroxylamine hydrochloride (PFBHA) and analysis was then performed by gas chromatography in combination with mass spectrometry (GC-MS). SPME data subjected to various wood species gave satisfactory results, with relative standard deviations (RSDs) obtained in the range of 3.1-10.3%. It was also well correlated with DC values, giving a correlation coefficient, RSQ, of 0.959. The quantitative analysis of formaldehyde by SPME was an alternative in wood industry with great potential

Keywords: Formaldehyde, GCMS, Plywood and SPME

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
5196 A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider

Authors: J. C. Cabanillas-Noris, M. I. Martínez-Hernández, I. León-Monzón

Abstract:

The selection of diffractive events in the ALICE experiment during the first data taking period (RUN-I) of the Large Hadron Collider (LHC) was limited by the range over which rapidity gaps occur. It would be possible to achieve better measurements by expanding the range in which the production of particles can be detected. For this purpose, the ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase (RUN-II). Any new detector should be able to take the data synchronously with all other detectors and be operated through the ALICE central systems. One of the key elements that must be developed for the AD0 detector is the Detector Control System (DCS). The DCS must be designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, from electronics settings and power supply levels to the archiving of operating conditions data and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), their threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters define the efficiency of AD0 and they have to be monitored and controlled through AD0 DCS. Finally, AD0 DCS provides the operator with multiple interfaces to execute these tasks. They are realized as operating panels and scripts running in the background. These features are implemented on a SCADA software platform as a distributed control system which integrates to the global control system of the ALICE experiment.

Keywords: AD0, ALICE, DCS, LHC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
5195 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: Apparent porosity, beneficiation, low grade chromite, refractory, spinel compounds, slag resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
5194 A Robust Visual Tracking Algorithm with Low-Rank Region Covariance

Authors: Songtao Wu, Yuesheng Zhu, Ziqiang Sun

Abstract:

Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.

Keywords: Visual tracking, region covariance descriptor, lowrankregion covariance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
5193 Fingerprint Identification using Discretization Technique

Authors: W. Y. Leng, S. M. Shamsuddin

Abstract:

Fingerprint based identification system; one of a well known biometric system in the area of pattern recognition and has always been under study through its important role in forensic science that could help government criminal justice community. In this paper, we proposed an identification framework of individuals by means of fingerprint. Different from the most conventional fingerprint identification frameworks the extracted Geometrical element features (GEFs) will go through a Discretization process. The intention of Discretization in this study is to attain individual unique features that could reflect the individual varianceness in order to discriminate one person from another. Previously, Discretization has been shown a particularly efficient identification on English handwriting with accuracy of 99.9% and on discrimination of twins- handwriting with accuracy of 98%. Due to its high discriminative power, this method is adopted into this framework as an independent based method to seek for the accuracy of fingerprint identification. Finally the experimental result shows that the accuracy rate of identification of the proposed system using Discretization is 100% for FVC2000, 93% for FVC2002 and 89.7% for FVC2004 which is much better than the conventional or the existing fingerprint identification system (72% for FVC2000, 26% for FVC2002 and 32.8% for FVC2004). The result indicates that Discretization approach manages to boost up the classification effectively, and therefore prove to be suitable for other biometric features besides handwriting and fingerprint.

Keywords: Discretization, fingerprint identification, geometrical features, pattern recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
5192 Named Entity Recognition using Support Vector Machine: A Language Independent Approach

Authors: Asif Ekbal, Sivaji Bandyopadhyay

Abstract:

Named Entity Recognition (NER) aims to classify each word of a document into predefined target named entity classes and is now-a-days considered to be fundamental for many Natural Language Processing (NLP) tasks such as information retrieval, machine translation, information extraction, question answering systems and others. This paper reports about the development of a NER system for Bengali and Hindi using Support Vector Machine (SVM). Though this state of the art machine learning technique has been widely applied to NER in several well-studied languages, the use of this technique to Indian languages (ILs) is very new. The system makes use of the different contextual information of the words along with the variety of features that are helpful in predicting the four different named (NE) classes, such as Person name, Location name, Organization name and Miscellaneous name. We have used the annotated corpora of 122,467 tokens of Bengali and 502,974 tokens of Hindi tagged with the twelve different NE classes 1, defined as part of the IJCNLP-08 NER Shared Task for South and South East Asian Languages (SSEAL) 2. In addition, we have manually annotated 150K wordforms of the Bengali news corpus, developed from the web-archive of a leading Bengali newspaper. We have also developed an unsupervised algorithm in order to generate the lexical context patterns from a part of the unlabeled Bengali news corpus. Lexical patterns have been used as the features of SVM in order to improve the system performance. The NER system has been tested with the gold standard test sets of 35K, and 60K tokens for Bengali, and Hindi, respectively. Evaluation results have demonstrated the recall, precision, and f-score values of 88.61%, 80.12%, and 84.15%, respectively, for Bengali and 80.23%, 74.34%, and 77.17%, respectively, for Hindi. Results show the improvement in the f-score by 5.13% with the use of context patterns. Statistical analysis, ANOVA is also performed to compare the performance of the proposed NER system with that of the existing HMM based system for both the languages.

Keywords: Named Entity (NE), Named Entity Recognition (NER), Support Vector Machine (SVM), Bengali, Hindi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3404
5191 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Content-based, indexing, cluster, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
5190 Feature Selection for Web Page Classification Using Swarm Optimization

Authors: B. Leela Devi, A. Sankar

Abstract:

The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.

Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3260
5189 Investigation of Some Methodologies in Providing Erosion Maps of Surface, Rill and Gully and Erosion Features

Authors: A. Mohammadi Torkashvand, N. Haghighat

Abstract:

Some methodologies were compared in providing erosion maps of surface, rill and gully and erosion features, in research which took place in the Varamin sub-basin, north-east Tehran, Iran. A photomorphic unit map was produced from processed satellite images, and four other maps were prepared by the integration of different data layers, including slope, plant cover, geology, land use, rocks erodibility and land units. Comparison of ground truth maps of erosion types and working unit maps indicated that the integration of land use, land units and rocks erodibility layers with satellite image photomorphic units maps provide the best methods in producing erosion types maps.

Keywords: Erosion Features, Geographic Information System, Remote Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
5188 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
5187 Fast Search Method for Large Video Database Using Histogram Features and Temporal Division

Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved fast search algorithm using combined histogram features and temporal division method for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal feature which is robust to color distortion. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 30 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 120ms, and Equal Error Rate (ERR) of 1% is achieved, which is more accurately and robust than conventional fast video search algorithm.

Keywords: Fast search, Adjacent pixel intensity differencequantization (APIDQ), DC image, Histogram feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
5186 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design & modeling, neural networks, genetic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
5185 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: Fractional differential (FD), Computed Tomography (CT), fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
5184 On the Variability of Tool Wear and Life at Disparate Operating Parameters

Authors: S. E. Oraby, A.M. Alaskari

Abstract:

The stochastic nature of tool life using conventional discrete-wear data from experimental tests usually exists due to many individual and interacting parameters. It is a common practice in batch production to continually use the same tool to machine different parts, using disparate machining parameters. In such an environment, the optimal points at which tools have to be changed, while achieving minimum production cost and maximum production rate within the surface roughness specifications, have not been adequately studied. In the current study, two relevant aspects are investigated using coated and uncoated inserts in turning operations: (i) the accuracy of using machinability information, from fixed parameters testing procedures, when variable parameters situations are emerged, and (ii) the credibility of tool life machinability data from prior discrete testing procedures in a non-stop machining. A novel technique is proposed and verified to normalize the conventional fixed parameters machinability data to suit the cases when parameters have to be changed for the same tool. Also, an experimental investigation has been established to evaluate the error in the tool life assessment when machinability from discrete testing procedures is employed in uninterrupted practical machining.

Keywords: Machinability, tool life, tool wear, wear variability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
5183 Protein Residue Contact Prediction using Support Vector Machine

Authors: Chan Weng Howe, Mohd Saberi Mohamad

Abstract:

Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.

Keywords: contact map, protein residue contact, support vector machine, protein structure prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
5182 Least-Squares Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: Clusters of Microcalcifications, Ductal Carcinoma in Situ, Least-Square Support Vector Machine, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
5181 Improving Protein-Protein Interaction Prediction by Using Encoding Strategies and Random Indices

Authors: Essam Al-Daoud

Abstract:

A New features are extracted and compared to improve the prediction of protein-protein interactions. The basic idea is to select and use the best set of features from the Tensor matrices that are produced by the frequency vectors of the protein sequences. Three set of features are compared, the first set is based on the indices that are the most common in the interacting proteins, the second set is based on the indices that tend to be common in the interacting and non-interacting proteins, and the third set is constructed by using random indices. Moreover, three encoding strategies are compared; that are based on the amino asides polarity, structure, and chemical properties. The experimental results indicate that the highest accuracy can be obtained by using random indices with chemical properties encoding strategy and support vector machine.

Keywords: protein-protein interactions, random indices, encoding strategies, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
5180 Defect Detection of Tiles Using 2D-Wavelet Transform and Statistical Features

Authors: M.Ghazvini, S. A. Monadjemi, N. Movahhedinia, K. Jamshidi

Abstract:

In this article, a method has been offered to classify normal and defective tiles using wavelet transform and artificial neural networks. The proposed algorithm calculates max and min medians as well as the standard deviation and average of detail images obtained from wavelet filters, then comes by feature vectors and attempts to classify the given tile using a Perceptron neural network with a single hidden layer. In this study along with the proposal of using median of optimum points as the basic feature and its comparison with the rest of the statistical features in the wavelet field, the relational advantages of Haar wavelet is investigated. This method has been experimented on a number of various tile designs and in average, it has been valid for over 90% of the cases. Amongst the other advantages, high speed and low calculating load are prominent.

Keywords: Defect detection, tile and ceramic quality inspection, wavelet transform, classification, neural networks, statistical features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
5179 Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.

Keywords: Graphite electrode, regression model, response surface methodology, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
5178 Evaluation of Wavelet Filters for Image Compression

Authors: G. Sadashivappa, K. V. S. AnandaBabu

Abstract:

The aim of this paper to characterize a larger set of wavelet functions for implementation in a still image compression system using SPIHT algorithm. This paper discusses important features of wavelet functions and filters used in sub band coding to convert image into wavelet coefficients in MATLAB. Image quality is measured objectively using peak signal to noise ratio (PSNR) and its variation with bit rate (bpp). The effect of different parameters is studied on different wavelet functions. Our results provide a good reference for application designers of wavelet based coder.

Keywords: Wavelet, image compression, sub band, SPIHT, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
5177 Automatic Text Summarization

Authors: Mohamed Abdel Fattah, Fuji Ren

Abstract:

This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.

Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
5176 The Comparative Investigation and Calculation of Thermo-Neutronic Parameters on Two Gens II and III Nuclear Reactors with Same Powers

Authors: Mousavi Shirazi, Seyed Alireza, Rastayesh, Sima

Abstract:

Whereas in the third generation nuclear reactors, dimensions of core and also the kind of coolant and enrichment percent of fuel have significantly changed than the second generation, therefore in this article the aim is based on a comparative investigation between two same power reactors of second and third generations, that the neutronic parameters of both reactors such as: K∞, Keff and its details and thermal hydraulic parameters such as: power density, specific power, volumetric heat rate, released power per fuel volume unit, volume and mass of clad and fuel (consisting fissile and fertile fuels), be calculated and compared together. By this comparing the efficiency and modification of third generation nuclear reactors than second generation which have same power can be distinguished. In order to calculate the cited parameters, some information such as: core dimensions, the pitch of lattice, the fuel matter, the percent of enrichment and the kind of coolant are used. For calculating the neutronic parameters, a neutronic program entitled: SIXFAC and also related formulas have been used. Meantime for calculating the thermal hydraulic and other parameters, analytical method and related formulas have been applied.

Keywords: Nuclear reactor, second generation, third generation, thermo-neutronics parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
5175 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals

Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya

Abstract:

The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.

Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
5174 Numerical Simulation of Minimum Distance Jet Impingement Heat Transfer

Authors: Aman Agarwal, Georg Klepp

Abstract:

Impinging jets are used in various industrial areas as a cooling and drying technique. The current research is concerned with the means of improving the heat transfer for configurations with a minimum distance of the nozzle to the impingement surface. The impingement heat transfer is described using numerical methods over a wide range of parameters for an array of planar jets. These parameters include varying jet flow speed, width of nozzle, distance of nozzle, angle of the jet flow, velocity and geometry of the impingement surface. Normal pressure and shear stress are computed as additional parameters. Using dimensionless characteristic numbers the parameters and the results are correlated to gain generalized equations. The results demonstrate the effect of the investigated parameters on the flow.

Keywords: Heat Transfer Coefficient, Minimum distance jet impingement, Numerical simulation, Dimensionless coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
5173 Identifying Interactions in a Feeding System

Authors: Jan Busch, Sebastian Schneider, Konja Knüppel, Peter Nyhuis

Abstract:

In production processes, assembly conceals a considerable potential for increased efficiency in terms of lowering production costs. Due to the individualisation of customer requirements, product variants have increased in recent years. Simultaneously, the portion of automated production systems has increased. A challenge is to adapt the flexibility and adaptability of automated systems to these changes. The Institute for Production Systems and Logistics developed an aerodynamic orientation system for feeding technology. When changing to other components, only four parameters must be adjusted. The expenditure of time for setting parameters is high. An objective therefore is developing an optimisation algorithm for automatic parameter configuration. Know how regarding the interaction of the four parameters and their effect on the sizes to be optimised is required in order to be able to develop a more efficient algorithm. This article introduces an analysis of the interactions between parameters and their influence on the quality of feeding.

Keywords: Aerodynamic feeding system, design of experiments, interactions between parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738