Search results for: Optimal parameters
281 Role of Fish Hepatic Aldehyde Oxidase in Oxidative in vitro Metabolism of Phenanthridine Heterocyclic Aromatic Compound
Authors: Khaled S. Al Salhen
Abstract:
Aldehyde oxidase is molybdo-flavoenzyme involved in the oxidation of hundreds of endogenous and exogenous and N-heterocyclic compounds and environmental pollutants. Uncharged N-heterocyclic aromatic compounds such phenanthridine are commonly distributed pollutants in soil, air, sediments, surface water and groundwater, and in animal and plant tissues. Phenanthridine as uncharged N-heterocyclic aromatic compound was incubated with partially purified aldehyde oxidase from rainbow trout fish liver. Reversed-phase HLPC method was used to separate the oxidation products from phenanthridine and the metabolite was identified. The 6(5H)-phenanthridinone was identified the major metabolite by partially purified aldehyde oxidase from fish liver. Kinetic constant for the oxidation reactions were determined spectrophotometrically and showed that this substrate has a good affinity (Km = 78 ± 7.6µM) for hepatic aldehyde oxidase, will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase, coupled with a relatively high oxidation rate (0.77± 0.03 nmol/min/mg protein). In addition, the kinetic parameters of hepatic fish aldehyde oxidase towards the phenanthridine substrate indicate that in vitro biotransformation by hepatic fish aldehyde oxidase will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase.
Keywords: Aldehyde oxidase, Fish, Phenanthridine, Specificity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280280 Integrated Design in Additive Manufacturing Based on Design for Manufacturing
Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon
Abstract:
Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.
Keywords: Additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255279 Rotor Bearing System Analysis Using the Transfer Matrix Method with Thickness Assumption of Disk and Bearing
Authors: Omid Ghasemalizadeh, Mohammad Reza Mirzaee, Hossein Sadeghi, Mohammad Taghi Ahmadian
Abstract:
There are lots of different ways to find the natural frequencies of a rotating system. One of the most effective methods which is used because of its precision and correctness is the application of the transfer matrix. By use of this method the entire continuous system is subdivided and the corresponding differential equation can be stated in matrix form. So to analyze shaft that is this paper issue the rotor is divided as several elements along the shaft which each one has its own mass and moment of inertia, which this work would create possibility of defining the named matrix. By Choosing more elements number, the size of matrix would become larger and as a result more accurate answers would be earned. In this paper the dynamics of a rotor-bearing system is analyzed, considering the gyroscopic effect. To increase the accuracy of modeling the thickness of the disk and bearings is also taken into account which would cause more complicated matrix to be solved. Entering these parameters to our modeling would change the results completely that these differences are shown in the results. As said upper, to define transfer matrix to reach the natural frequencies of probed system, introducing some elements would be one of the requirements. For the boundary condition of these elements, bearings at the end of the shaft are modeled as equivalent spring and dampers for the discretized system. Also, continuous model is used for the shaft in the system. By above considerations and using transfer matrix, exact results are taken from the calculations. Results Show that, by increasing thickness of the bearing the amplitude of vibration would decrease, but obviously the stiffness of the shaft and the natural frequencies of the system would accompany growth. Consequently it is easily understood that ignoring the influences of bearing and disk thicknesses would results not real answers.Keywords: Rotor System, Disk and Bearing Thickness, Transfer Matrix, Amplitude.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547278 Urban Environment Quality Improvement Planning Case Study: Moft Abad Neighborhood, Tehran, Iran
Authors: Elham Lashkari, Mehrshad Khalaj
Abstract:
Rapid enlargement and physical development of cities have facilitated the emergence of a number of city life crises and decrease of environment quality. Subsequently, the need for noticing the concept of quality and its improvement in urban environments, besides quantitative issues, is obviously recognized. In the domain of urban ideas the importance of taking these issues into consideration is obvious not only in accordance to sustainable development concepts and improvement of public environment quality, but also in the enhancement of social and behavioral models. The major concern of present article is to study the nature of urban environment quality in urban development plans, which is important not only in the concept and the aim of projects but also in their execution procedure. As a result, this paper is going to utilize planning capacities caused by environmental virtues in the planning procedure of Moft Abad neighborhood. Thus, at the first step, applying the Analytical Hierarchy Process (AHP), it has assessed quantitative environmental issues. The present conditions of Moft Abad state that “the neighborhood is generally suffering from the lack of qualitative parameters, and the previously formed planning procedures could not take the sustainable and developmental paths which are aimed at environment quality virtues." The diminution of economical and environmental virtues has resulted in the diminution of residential and social virtues. Therefore, in order to enhance the environment quality in Moft Abad, the present paper has tried to supply the subject plans in order to make a safe, healthy, and lively neighborhood.Keywords: Urban Environment Quality, Neighborhood Plan, Urban Development Plan, Analytical Hierarchy Process (AHP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085277 Soil-Structure Interaction Models for the Reinforced Foundation System: A State-of-the-Art Review
Authors: Ashwini V. Chavan, Sukhanand S. Bhosale
Abstract:
Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of it over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation, respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model’. The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. A flow-chart showing procedure for compution of deformation and mobilized tension is also incorporated in the paper. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.
Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652276 Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context
Authors: Shrikant Charhate, Gayatri Deshpande
Abstract:
Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability.
Keywords: Connections, geotextile, permeable ACB, pavements, stone base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889275 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor
Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir
Abstract:
This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.Keywords: Centrifugal compressor, contra-rotating, interaction rotor, vacuum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829274 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage
Abstract:
Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.
Keywords: Solar access analysis, energy building design tools, urban planning, solar potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068273 A Case Study on Appearance Based Feature Extraction Techniques and Their Susceptibility to Image Degradations for the Task of Face Recognition
Authors: Vitomir Struc, Nikola Pavesic
Abstract:
Over the past decades, automatic face recognition has become a highly active research area, mainly due to the countless application possibilities in both the private as well as the public sector. Numerous algorithms have been proposed in the literature to cope with the problem of face recognition, nevertheless, a group of methods commonly referred to as appearance based have emerged as the dominant solution to the face recognition problem. Many comparative studies concerned with the performance of appearance based methods have already been presented in the literature, not rarely with inconclusive and often with contradictory results. No consent has been reached within the scientific community regarding the relative ranking of the efficiency of appearance based methods for the face recognition task, let alone regarding their susceptibility to appearance changes induced by various environmental factors. To tackle these open issues, this paper assess the performance of the three dominant appearance based methods: principal component analysis, linear discriminant analysis and independent component analysis, and compares them on equal footing (i.e., with the same preprocessing procedure, with optimized parameters for the best possible performance, etc.) in face verification experiments on the publicly available XM2VTS database. In addition to the comparative analysis on the XM2VTS database, ten degraded versions of the database are also employed in the experiments to evaluate the susceptibility of the appearance based methods on various image degradations which can occur in "real-life" operating conditions. Our experimental results suggest that linear discriminant analysis ensures the most consistent verification rates across the tested databases.
Keywords: Biometrics, face recognition, appearance based methods, image degradations, the XM2VTS database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283272 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.
Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961271 Estimation Model for Concrete Slump Recovery by Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
This paper aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%-1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameters, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.Keywords: Estimation model, second superplasticizer dosage, slump loss, slump recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915270 Body Composition Response to Lower Body Positive Pressure Training in Obese Children
Authors: Basant H. El-Refay, Nabeel T. Faiad
Abstract:
Background: The high prevalence of obesity in Egypt has a great impact on the health care system, economic and social situation. Evidence suggests that even a moderate amount of weight loss can be useful. Aim of the study: To analyze the effects of lower body positive pressure supported treadmill training, conducted with hypocaloric diet, on body composition of obese children. Methods: Thirty children aged between 8 and 14 years, were randomly assigned into two groups: intervention group (15 children) and control group (15 children). All of them were evaluated using body composition analysis through bioelectric impedance. The following parameters were measured before and after the intervention: body mass, body fat mass, muscle mass, body mass index (BMI), percentage of body fat and basal metabolic rate (BMR). The study group exercised with antigravity treadmill three times a week during 2 months, and participated in a hypocaloric diet program. The control group participated in a hypocaloric diet program only. Results: Both groups showed significant reduction in body mass, body fat mass and BMI. Only study group showed significant reduction in percentage of body fat (p = 0.0.043). Changes in muscle mass and BMR didn't reach statistical significance in both groups. No significant differences were observed between groups except for muscle mass (p = 0.049) and BMR (p = 0.042) favoring study group. Conclusion: Both programs proved effective in the reduction of obesity indicators, but lower body positive pressure supported treadmill training was more effective in improving muscle mass and BMR.
Keywords: Children, Hypocaloric diet, Lower body positive pressure supported treadmill, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4324269 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review
Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi
Abstract:
Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.
Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395268 Quality of Bali Beef and Broiler after Immersion in Liquid Smoke on Different Concentrations and Storage Times
Authors: E. Abustam, M. Yusuf, H. M. Ali, M. I. Said, F. N. Yuliati
Abstract:
The aim of this study was to improve the durability and quality of Bali beef (M. Longissimus dorsi) and broiler carcass through the addition of liquid smoke as a natural preservative. This study was using Longissimus dorsi muscle from male Bali beef aged 3 years, broiler breast and thigh aged 40 days. Three types of meat were marinated in liquid smoke with concentrations of 0, 5, and 10% for 30 minutes at the level of 20% of the sample weight (w/w). The samples were storage at 2-5°C for 1 month. This study designed as a factorial experiment 3 x 3 x 4 based on a completely randomized design with 5 replications; the first factor was meat type (beef, chicken breast and chicken thigh); the 2nd factor was liquid smoke concentrations (0, 5, and 10%), and the 3rd factor was storage duration (1, 2, 3, and 4 weeks). Parameters measured were TBA value, total bacterial colonies, water holding capacity (WHC), shear force value both before and after cooking (80°C – 15min.), and cooking loss. The results showed that the type of meat produced WHC, shear force value, cooking loss and TBA differed between the three types of meat. Higher concentration of liquid smoke, the WHC, shear force value, TBA, and total bacterial colonies were decreased; at a concentration of 10% of liquid smoke, the total bacterial colonies decreased by 57.3% from untreated with liquid smoke. Longer storage, the total bacterial colonies and WHC were increased, while the shear force value and cooking loss were decreased. It can be concluded that a 10% concentration of liquid smoke was able to maintain fat oxidation and bacterial growth in Bali beef and chicken breast and thigh.Keywords: Bali beef, chicken meat, liquid smoke, meat quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548267 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather
Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa
Abstract:
A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Zimbabwe has no study that notes if grid failures have been caused by GICs. Research and monitoring are needed to investigate this possible relationship purpose of this paper is to characterize GICs with a power grid network. This paper analyses data collected, which are geomagnetic data, which include the Kp index, Disturbance storm time (DST) index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.
Keywords: Adverse space weather, DST index, geomagnetically induced currents, Kp index, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157266 The Micro Ecosystem Restoration Mechanism Applied for Feasible Research of Lakes Eutrophication Enhancement
Authors: Ching-Tsan Tsai, Sih-Rong Chen, Chi-Hung Hsieh
Abstract:
The technique of inducing micro ecosystem restoration is one of aquatic ecology engineering methods used to retrieve the polluted water. Batch scale study, pilot plant study, and field study were carried out to observe the eutrophication using the Inducing Ecology Restorative Symbiosis Agent (IERSA) consisting mainly degraded products by using lactobacillus, saccharomycete, and phycomycete. The results obtained from the experiments of the batch scale and pilot plant study allowed us to development the parameters for the field study. A pond, 5 m to the outlet of a lake, with an area of 500 m2 and depth of 0.6-1.2 m containing about 500 tons of water was selected as a model. After the treatment with 10 mg IERSA/L water twice a week for 70 days, the micro restoration mechanisms consisted of three stages (i.e., restoration, impact maintenance, and ecology recovery experiment after impact). The COD, TN, TKN, and chlorophyll a were reduced significantly in the first week. Although the unexpected heavy rain and contaminate from sewage system might slow the ecology restoration. However, the self-cleaning function continued and the chlorophyll a reduced for 50% in one month. In the 4th week, amoeba, paramecium, rotifer, and red wriggle worm reappeared, and the number of fish flies appeared up to1000 fish fries/m3. Those results proved that inducing restorative mechanism can be applied to improve the eutrophication and to control the growth of algae in the lakes by gaining the selfcleaning through inducing and competition of microbes. The situation for growth of fishes also can reach an excellent result due to the improvement of water quality.Keywords: Ecosystem restoration, eutrophication, lake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871265 A Lactose-Free Yogurt Using Membrane Systems and Modified Milk Protein Concentrate: Production and Characterization
Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh
Abstract:
Using membrane technology and modification of milk protein structural properties, a lactose free yogurt was developed. The functional, textural and structural properties of the sample were evaluated and compared with the commercial ones. Results showed that the modification of protein in high fat set yogurt resulted in 11.55%, 18%, 20.21% and 7.08% higher hardness, consistency, water holding capacity, and shininess values compared with the control one. Furthermore, these indices of modified low fat set yogurt were 21.40%, 25.41%, 28.15% & 10.58% higher than the control one, which could be related to the gel network microstructural properties in yogurt formulated with modified protein. In this way, in comparison with the control one, the index of linkage strength (A), the number of linkages (z), and time scale of linkages (λrel) of the high fat modified yogurt were 22.10%, 50.68%, 21.82% higher than the control one; whereas, the average linear distance between two adjacent crosslinks (ξ), was 16.77% lower than the control one. For low fat modified yogurt, A, z, λrel, and ξ indices were 34.30%, 61.70% and 42.60% higher and 19.20% lower than the control one, respectively. The shelf life of modified yogurt was extended to 10 weeks in the refrigerator, while, the control set yogurt had a 3 weeks shelf life. The acidity of high fat and low fat modified yogurts increased from 76 to 84 and 72 to 80 Dornic degrees during 10 weeks of storage, respectively, whereas for control high fat and low fat yogurts they increased from 82 to 122 and 77 to 112 Dornic degrees, respectively. This behavior could be due to the elimination of microorganism’s source of energy in modified yogurt. Furthermore, the calories of high fat and low fat lactose free yogurts were 25% and 40% lower than their control samples, respectively. Generally, results showed that the lactose free yogurt with modified protein, despite of 1% lower protein content than the control one, showed better functional properties, nutritional properties, network parameters, and shelf stability, which could be promising in the set yogurt industry.
Keywords: Lactose free, low calorie, network properties, protein modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272264 Lateral Torsional Buckling Investigation on Welded Q460GJ Structural Steel Unrestrained Beams under a Point Load
Authors: Yue Zhang, Bo Yang, Gang Xiong, Mohamed Elchalakanic, Shidong Nie
Abstract:
This study aims to investigate the lateral torsional buckling of I-shaped cross-section beams fabricated from Q460GJ structural steel plates. Both experimental and numerical simulation results are presented in this paper. A total of eight specimens were tested under a three-point bending, and the corresponding numerical models were established to conduct parametric studies. The effects of some key parameters such as the non-dimensional member slenderness and the height-to-width ratio, were investigated based on the verified numerical models. Also, the results obtained from the parametric studies were compared with the predictions calculated by different design codes including the Chinese design code (GB50017-2003, 2003), the new draft version of Chinese design code (GB50017-201X, 2012), Eurocode 3 (EC3, 2005) and the North America design code (ANSI/AISC360-10, 2010). These comparisons indicated that the sectional height-to-width ratio does not play an important role to influence the overall stability load-carrying capacity of Q460GJ structural steel beams with welded I-shaped cross-sections. It was also found that the design methods in GB50017-2003 and ANSI/AISC360-10 overestimate the overall stability and load-carrying capacity of Q460GJ welded I-shaped cross-section beams.
Keywords: Experimental study, finite element analysis, global stability, lateral torsional buckling, Q460GJ structural steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057263 Respirator System For Total Liquid Ventilation
Authors: Miguel A. Gómez , Enrique Hilario , Francisco J. Alvarez , Elena Gastiasoro , Antonia Alvarez, Juan L. Larrabe
Abstract:
Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.
Keywords: immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator; volume-controlled
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532262 A Model to Determine Atmospheric Stability and its Correlation with CO Concentration
Authors: Kh. Ashrafi, Gh. A. Hoshyaripour
Abstract:
Atmospheric stability plays the most important role in the transport and dispersion of air pollutants. Different methods are used for stability determination with varying degrees of complexity. Most of these methods are based on the relative magnitude of convective and mechanical turbulence in atmospheric motions. Richardson number, Monin-Obukhov length, Pasquill-Gifford stability classification and Pasquill–Turner stability classification, are the most common parameters and methods. The Pasquill–Turner Method (PTM), which is employed in this study, makes use of observations of wind speed, insolation and the time of day to classify atmospheric stability with distinguishable indices. In this study, a model is presented to determination of atmospheric stability conditions using PTM. As a case study, meteorological data of Mehrabad station in Tehran from 2000 to 2005 is applied to model. Here, three different categories are considered to deduce the pattern of stability conditions. First, the total pattern of stability classification is obtained and results show that atmosphere is 38.77%, 27.26%, 33.97%, at stable, neutral and unstable condition, respectively. It is also observed that days are mostly unstable (66.50%) while nights are mostly stable (72.55%). Second, monthly and seasonal patterns are derived and results indicate that relative frequency of stable conditions decrease during January to June and increase during June to December, while results for unstable conditions are exactly in opposite manner. Autumn is the most stable season with relative frequency of 50.69% for stable condition, whilst, it is 42.79%, 34.38% and 27.08% for winter, summer and spring, respectively. Hourly stability pattern is the third category that points out that unstable condition is dominant from approximately 03-15 GTM and 04-12 GTM for warm and cold seasons, respectively. Finally, correlation between atmospheric stability and CO concentration is achieved.Keywords: Atmospheric stability, Pasquill-Turner classification, convective turbulence, mechanical turbulence, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6452261 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling
Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao
Abstract:
Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.Keywords: Neural Network, Fuzzy, River, Forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288260 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation
Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi
Abstract:
Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.
Keywords: Coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951259 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.
Keywords: Automobiles, welding, corrosion, lap joints, Micro XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650258 Ingenious Use of Hypo Sludge in M25 Concrete
Authors: Abhinandan Singh Gill
Abstract:
Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.
Keywords: Concrete, sludge waste, hypo sludge, supplementary cementitious material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263257 Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils
Authors: Helena M. Wilhelm, Paulo O. Fernandes, Laís P. Dill, Kethlyn G. Moscon
Abstract:
The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil’s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer's construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 °C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 °C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability.
Keywords: Compatibility, Rancimat, natural ester, vegetable oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609256 Eco-Roof Systems in Subtropical Climates for Sustainable Development and Mitigation of Climate Change
Authors: M. O’Driscoll, M. Anwar, M. G. Rasul
Abstract:
The benefits of eco-roofs is quite well known, however there remains very little research conducted for the implementation of eco-roofs in subtropical climates such as Australia. There are many challenges facing Australia as it moves into the future, climate change is proving to be one of the leading challenges. In order to move forward with the mitigation of climate change, the impacts of rapid urbanization need to be offset. Eco-roofs are one way to achieve this; this study presents the energy savings and environmental benefits of the implementation of eco-roofs in subtropical climates. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two shipping containers were converted into small offices, one with an eco-roof and one without. These were used for temperature, humidity and energy consumption data collection. In addition, a computational model was developed using Design Builder software (state-of-the-art building energy simulation software) for simulating energy consumption of shipping containers and environmental parameters, this was done to allow comparison between simulated and real world data. This study found that eco-roofs are very effective in subtropical climates and provide energy saving of about 13% which agrees well with simulated results.
Keywords: Climate Change, Eco/Green roof, Energy savings, Subtropical climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240255 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys
Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze
Abstract:
At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.
Keywords: Gamma-irradiation, internal friction, shear modulus, SiGe alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623254 Evaluation of Underground Water Flow into Tabriz Metro Tunnel First Line by Hydro-Mechanical Coupling Analysis
Authors: L. Nikakhtar, S. Zare
Abstract:
One of the main practical difficulties attended with tunnel construction is related to underground water. Uncontrolled water behavior may cause extra loads on the lining, mechanical instability, and unfavorable environmental problems. Estimating underground water inflow rate to the tunnels is a complex skill. The common calculation methods are: empirical methods, analytical solutions, numerical solutions based on the equivalent continuous porous media. In this research the rate of underground water inflow to the Tabriz metro first line tunnel has been investigated by numerical finite difference method using FLAC2D software. Comparing results of Heuer analytical method and numerical simulation showed good agreement with each other. Fully coupled and one-way coupled hydro mechanical states as well as water-free conditions in the soil around the tunnel are used in numerical models and these models have been applied to evaluate the loading value on the tunnel support system. Results showed that the fully coupled hydro mechanical analysis estimated more axial forces, moments and shear forces in linings, so this type of analysis is more conservative and reliable method for design of tunnel lining system. As sensitivity analysis, inflow water rates into the tunnel were evaluated in different soil permeability, underground water levels and depths of the tunnel. Result demonstrated that water level in constant depth of the tunnel is more sensitive factor for water inflow rate to the tunnel in comparison of other parameters investigated in the sensitivity analysis.
Keywords: Coupled hydro mechanical analysis, FLAC2D, Tabriz Metro, inflow rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048253 Response Time Behavior Trends of Proptional, Propotional Integral and Proportional Integral Derivative Mode on Lab Scale
Authors: Syed Zohaib Javaid Zaidi, W. Iqbal
Abstract:
The industrial automation is dependent upon pneumatic control systems. The industrial units are now controlled with digital control systems to tackle the process variables like Temperature, Pressure, Flow rates and Composition.
This research work produces an evaluation of the response time fluctuations for proportional mode, proportional integral and proportional integral derivative modes of automated chemical process control. The controller output is measured for different values of gain with respect to time in three modes (P, PI and PID). In case of P-mode for different values of gain the controller output has negligible change. When the controller output of PI-mode is checked for constant gain, it can be seen that by decreasing the integral time the controller output has showed more fluctuations. The PID mode results have found to be more interesting in a way that when rate minute has changed, the controller output has also showed fluctuations with respect to time. The controller output for integral mode and derivative mode are observed with lesser steady state error, minimum offset and larger response time to control the process variable. The tuning parameters in case of P-mode are only steady state gain with greater errors with respect to controller output. The integral mode showed controller outputs with intermediate responses during integral gain (ki). By increasing the rate minute the derivative gain (kd) also increased which showed the controlled oscillations in case of PID mode and lesser overshoot.
Keywords: Controller Output, P, PI &PID modes, Steady state gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5583252 Simplified Empirical Method for Predicting Liquefaction Potential and Its Application to Kaohsiung Areas in Taiwan
Authors: Darn H. Hsiao, Zhu-Yun Zheng
Abstract:
Since Taiwan is located between the Eurasian and Filipino plates and earthquakes often thus occur. The coastal plains in western Taiwan are alluvial plains, and the soils of the alluvium are mostly from the Lao-Shan belt in the central mountainous area of southern Taiwan. It could come mostly from sand/shale and slate. The previous investigation found that the soils in the Kaohsiung area of southern Taiwan are mainly composed of slate, shale, quartz, low-plastic clay, silt, silty sand and so on. It can also be found from the past earthquakes that the soil in Kaohsiung is highly susceptible to soil subsidence due to liquefaction. Insufficient bearing capacity of building will cause soil liquefaction disasters. In this study, the boring drilling data from nine districts among the Love River Basin in the city center, and some factors affecting liquefaction include the content of fines (FC), standard penetration test N value (SPT N), the thickness of clay layer near ground-surface, and the thickness of possible liquefied soil were further discussed for liquefaction potential as well as groundwater level. The results show that the liquefaction potential is higher in the areas near the riverside, the backfill area, and the west area of the study area. This paper also uses the old paleo-geological map, soil particle distribution curve, compared with LPI map calculated from the analysis results. After all the parameters finally were studied for five sub zones in the Love River Basin by maximum-minimum method, it is found that both of standard penetration test N value and the thickness of the clay layer will be most influential.
Keywords: Liquefaction, western Taiwan, liquefaction potential map, factors influence high liquefaction potential areas, LPI analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704